Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Michael Sauder is active.

Publication


Featured researches published by J. Michael Sauder.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin

Petr G. Leiman; Marek Basler; Udupi A. Ramagopal; Jeffrey B. Bonanno; J. Michael Sauder; Stefan Pukatzki; Stephen K. Burley; Steven C. Almo; John J. Mekalanos

Protein secretion is a common property of pathogenic microbes. Gram-negative bacterial pathogens use at least 6 distinct extracellular protein secretion systems to export proteins through their multilayered cell envelope and in some cases into host cells. Among the most widespread is the newly recognized Type VI secretion system (T6SS) which is composed of 15–20 proteins whose biochemical functions are not well understood. Using crystallographic, biochemical, and bioinformatic analyses, we identified 3 T6SS components, which are homologous to bacteriophage tail proteins. These include the tail tube protein; the membrane-penetrating needle, situated at the distal end of the tube; and another protein associated with the needle and tube. We propose that T6SS is a multicomponent structure whose extracellular part resembles both structurally and functionally a bacteriophage tail, an efficient machine that translocates proteins and DNA across lipid membranes into cells.


The EMBO Journal | 2004

Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.

Hal A. Lewis; Sean Buchanan; Stephen K. Burley; Kris Conners; Mark Dickey; Michael R. Dorwart; Richard Fowler; Xia Gao; William B. Guggino; Wayne A. Hendrickson; John F. Hunt; Margaret C. Kearins; Don Lorimer; Peter C. Maloney; Kai W. Post; Kanagalaghatta R. Rajashankar; Marc E. Rutter; J. Michael Sauder; Stephanie Shriver; Patrick H. Thibodeau; Philip J. Thomas; Marie Zhang; Xun Zhao; Spencer Emtage

Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP‐binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide‐binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF‐causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP‐ and ATP‐bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1‐transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1–NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Crystal structure of the human PRMT5:MEP50 complex

Stephen Antonysamy; Zahid Q. Bonday; Robert M. Campbell; Brandon L. Doyle; Zhanna Druzina; Tarun Gheyi; Bomie Han; Louis Nickolaus Jungheim; Yuewei Qian; Charles T. Rauch; Marijane Russell; J. Michael Sauder; Stephen R. Wasserman; Kenneth Weichert; Francis S. Willard; Aiping Zhang; Spencer Emtage

Protein arginine methyltransferases (PRMTs) play important roles in several cellular processes, including signaling, gene regulation, and transport of proteins and nucleic acids, to impact growth, differentiation, proliferation, and development. PRMT5 symmetrically di-methylates the two-terminal ω-guanidino nitrogens of arginine residues on substrate proteins. PRMT5 acts as part of a multimeric complex in concert with a variety of partner proteins that regulate its function and specificity. A core component of these complexes is the WD40 protein MEP50/WDR77/p44, which mediates interactions with binding partners and substrates. We have determined the crystal structure of human PRMT5 in complex with MEP50 (methylosome protein 50), bound to an S-adenosylmethionine analog and a peptide substrate derived from histone H4. The structure of the surprising hetero-octameric complex reveals the close interaction between the seven-bladed β-propeller MEP50 and the N-terminal domain of PRMT5, and delineates the structural elements of substrate recognition.


Journal of Structural and Functional Genomics | 2007

Structural genomics of protein phosphatases.

Steven C. Almo; Jeffrey B. Bonanno; J. Michael Sauder; Spencer Emtage; Teresa P. DiLorenzo; Vladimir N. Malashkevich; Steven R. Wasserman; Subramanyam Swaminathan; Subramaniam Eswaramoorthy; Rakhi Agarwal; Desigan Kumaran; Mahendra Madegowda; Sugadev Ragumani; Yury Patskovsky; Johnjeff Alvarado; Udupi A. Ramagopal; Joana Faber-Barata; Mark R. Chance; Andrej Sali; András Fiser; Zhong Yin Zhang; David S. Lawrence; Stephen K. Burley

The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.


Structure | 2001

A structural genomics approach to the study of quorum sensing: crystal structures of three LuxS orthologs.

Hal A. Lewis; Eva Furlong; Boris Laubert; Galina Eroshkina; Yelena Batiyenko; Jason M. Adams; Mark G. Bergseid; Curtis Marsh; Thomas S. Peat; Wendy E. Sanderson; J. Michael Sauder; Sean Buchanan

BACKGROUND Quorum sensing is the mechanism by which bacteria control gene expression in response to cell density. Two major quorum-sensing systems have been identified, system 1 and system 2, each with a characteristic signaling molecule (autoinducer-1, or AI-1, in the case of system 1, and AI-2 in system 2). The luxS gene is required for the AI-2 system of quorum sensing. LuxS and AI-2 have been described in both Gram-negative and Gram-positive bacterial species and have been shown to be involved in the expression of virulence genes in several pathogens. RESULTS The structure of the LuxS protein from three different bacterial species with resolutions ranging from 1.8 A to 2.4 A has been solved using an X-ray crystallographic structural genomics approach. The structure of LuxS reported here is seen to have a new alpha-beta fold. In all structures, an equivalent homodimer is observed. A metal ion identified as zinc was seen bound to a Cys-His-His triad. Methionine was found bound to the protein near the metal and at the dimer interface. CONCLUSIONS These structures provide support for a hypothesis that explains the in vivo action of LuxS. Specifically, acting as a homodimer, the protein binds a methionine analog, S-ribosylhomocysteine (SRH). The zinc atom is in position to cleave the ribose ring in a step along the synthesis pathway of AI-2.


RNA | 2012

Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases

Erin L. Garside; Matthew J. Schellenberg; Emily M. Gesner; Jeffrey B. Bonanno; J. Michael Sauder; Stephen K. Burley; Steven C. Almo; Garima Mehta; Andrew M. MacMillan

Small RNAs derived from clustered, regularly interspaced, short palindromic repeat (CRISPR) loci in bacteria and archaea are involved in an adaptable and heritable gene-silencing pathway. Resistance to invasive genetic material is conferred by the incorporation of short DNA sequences derived from this material into the genome as CRISPR spacer elements separated by short repeat sequences. Processing of long primary transcripts (pre-crRNAs) containing these repeats by a CRISPR-associated (Cas) RNA endonuclease generates the mature effector RNAs that target foreign nucleic acid for degradation. Here we describe functional studies of a Cas5d ortholog, and high-resolution structural studies of a second Cas5d family member, demonstrating that Cas5d is a sequence-specific RNA endonuclease that cleaves CRISPR repeats and is thus responsible for processing of pre-crRNA. Analysis of the structural homology of Cas5d with the previously characterized Cse3 protein allows us to model the interaction of Cas5d with its RNA substrate and conclude that it is a member of a larger family of CRISPR RNA endonucleases.


Journal of Structural and Functional Genomics | 2005

High-throughput Limited Proteolysis/Mass Spectrometry for Protein Domain Elucidation

Xia Gao; Kevin Bain; Jeffery B. Bonanno; Michelle D. Buchanan; Davin Henderson; Don Lorimer; Curtis Marsh; Julie A. Reynes; J. Michael Sauder; Ken Schwinn; Chau Thai; Stephen K. Burley

High-resolution structural information is important for improving our understanding of protein function in vitro and in vivo and providing information to enable drug discovery. The process leading to X-ray structure determination is often time consuming and labor intensive. It requires informed decisions in expression construct design, expression host selection, and strategies for protein purification, crystallization and structure determination. Previously published studies have demonstrated that compact globular domains defined by limited proteolysis represent good candidates for production of diffraction quality crystals [1–7]. Integration of mass spectrometry and proteolysis experiments can provide accurate definition of domain boundaries at unprecedented rates. We have conducted a critical evaluation of this approach with 400 target proteins produced by SGX (Structural GenomiX, Inc.) for the New York Structural GenomiX Research Consortium (NYSGXRC; http://www.nysgxrc.org) under the auspices of the National Institute of General Medical Sciences Protein Structure Initiative (http://www.nigms.nih.gov/psi). The objectives of this study were to develop parallel/automated protocols for proteolytic digestion and data acquisition for multiple proteins, and to carry out a systematic study to correlate domain definition via proteolysis with outcomes of crystallization and structure determination attempts. Initial results from this work demonstrate that proteins yielding diffraction quality crystals are typically resistant to proteolysis. Large-scale sub cloning and subsequent testing of expression, solubility, and crystallizability of proteolytically defined truncations is currently underway.


Journal of Structural and Functional Genomics | 2005

New York-Structural GenomiX Research Consortium (NYSGXRC): A large scale center for the protein structure initiative

Jeffrey B. Bonanno; Steven C. Almo; Anne R. Bresnick; Mark R. Chance; Andras Fiser; Subramanyam Swaminathan; J. Jiang; F.William Studier; Lawrence Shapiro; Christopher D. Lima; Theresa M. Gaasterland; Andrej Sali; Kevin Bain; Ingeborg Feil; Xia Gao; Don Lorimer; Aurora Ramos; J. Michael Sauder; Steven R. Wasserman; Spencer Emtage; Kevin L. D'Amico; Stephen K. Burley

Structural GenomiX, Inc. (SGX), four New York area institutions, and two University of California schools have formed the New York Structural GenomiX Research Consortium (NYSGXRC), an industrial/academic Research Consortium that exploits individual core competencies to support all aspects of the NIH-NIGMS funded Protein Structure Initiative (PSI), including protein family classification and target selection, generation of protein for biophysical analyses, sample preparation for structural studies, structure determination and analyses, and dissemination of results. At the end of the PSI Pilot Study Phase (PSI-1), the NYSGXRC will be capable of producing 100–200 experimentally determined protein structures annually. All Consortium activities can be scaled to increase production capacity significantly during the Production Phase of the PSI (PSI-2). The Consortium utilizes both centralized and de-centralized production teams with clearly defined deliverables and hand-off procedures that are supported by a web-based target/sample tracking system (SGX Laboratory Information Data Management System, LIMS, and NYSGXRC Internal Consortium Experimental Database, ICE-DB). Consortium management is provided by an Executive Committee, which is composed of the PI and all Co-PIs. Progress to date is tracked on a publicly available Consortium web site (http://www.nysgxrc.org) and all DNA/protein reagents and experimental protocols are distributed freely from the New York City Area institutions. In addition to meeting the requirements of the Pilot Study Phase and preparing for the Production Phase of the PSI, the NYSGXRC aims to develop modular technologies that are transferable to structural biology laboratories in both academe and industry. The NYSGXRC PI and Co-PIs intend the PSI to have a transforming effect on the disciplines of X-ray crystallography and NMR spectroscopy of biological macromolecules. Working with other PSI-funded Centers, the NYSGXRC seeks to create the structural biology laboratory of the future. Herein, we present an overview of the organization of the NYSGXRC and describe progress toward development of a high-throughput Gene→Structure platform. An analysis of current and projected consortium metrics reflects progress to date and delineates opportunities for further technology development.


Biochemistry | 2009

Computation-facilitated assignment of the function in the enolase superfamily: a regiochemically distinct galactarate dehydratase from Oceanobacillus iheyensis .

John F. Rakus; Chakrapani Kalyanaraman; Alexander A. Fedorov; Elena V. Fedorov; Fiona P. Mills-Groninger; Rafael Toro; Jeffrey B. Bonanno; Kevin Bain; J. Michael Sauder; Stephen K. Burley; Steven C. Almo; Matthew P. Jacobson; John A. Gerlt

The structure of an uncharacterized member of the enolase superfamily from Oceanobacillus iheyensis (GI 23100298, IMG locus tag Ob2843, PDB entry 2OQY ) was determined by the New York SGX Research Center for Structural Genomics (NYSGXRC). The structure contained two Mg(2+) ions located 10.4 A from one another, with one located in the canonical position in the (beta/alpha)(7)beta-barrel domain (although the ligand at the end of the fifth beta-strand is His, unprecedented in structurally characterized members of the superfamily); the second is located in a novel site within the capping domain. In silico docking of a library of mono- and diacid sugars to the active site predicted a diacid sugar as a likely substrate. Activity screening of a physical library of acid sugars identified galactarate as the substrate (k(cat) = 6.8 s(-1), K(M) = 620 microM, k(cat)/K(M) = 1.1 x 10(4) M(-1) s(-1)), allowing functional assignment of Ob2843 as galactarate dehydratase (GalrD-II). The structure of a complex of the catalytically impaired Y90F mutant with Mg(2+) and galactarate allowed identification of a Tyr 164-Arg 162 dyad as the base that initiates the reaction by abstraction of the alpha-proton and Tyr 90 as the acid that facilitates departure of the beta-OH leaving group. The enzyme product is 2-keto-d-threo-4,5-dihydroxyadipate, the enantiomer of the product obtained in the GalrD reaction catalyzed by a previously characterized bifunctional l-talarate/galactarate dehydratase (TalrD/GalrD). On the basis of the different active site structures and different regiochemistries, we recognize that these functions represent an example of apparent, not actual, convergent evolution of function. The structure of GalrD-II and its active site architecture allow identification of the seventh functionally and structurally characterized subgroup in the enolase superfamily. This study provides an additional example in which an integrated sequence- and structure-based strategy employing computational approaches is a viable approach for directing functional assignment of unknown enzymes discovered in genome projects.


Molecular & Cellular Proteomics | 2014

Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex

Seung Joong Kim; Javier Fernandez-Martinez; Parthasarathy Sampathkumar; Anne Martel; Tsutomu Matsui; Hiro Tsuruta; Thomas M. Weiss; Yi Shi; Ane Markina-Iñarrairaegui; Jeffery B. Bonanno; J. Michael Sauder; Stephen K. Burley; Brian T. Chait; Steven C. Almo; Michael P. Rout; Andrej Sali

The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPCs outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPCs scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.

Collaboration


Dive into the J. Michael Sauder's collaboration.

Top Co-Authors

Avatar

Stephen K. Burley

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Steven C. Almo

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Andrej Sali

University of California

View shared research outputs
Top Co-Authors

Avatar

Jeffrey B. Bonanno

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Subramanyam Swaminathan

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge