Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey B. Bonanno is active.

Publication


Featured researches published by Jeffrey B. Bonanno.


Nature Methods | 2008

Protein production and purification.

Susanne Gräslund; Pär Nordlund; Johan Weigelt; B. Martin Hallberg; James E. Bray; O. Gileadi; Stefan Knapp; U. Oppermann; C.H. Arrowsmith; Raymond Hui; Jinrong Ming; Sirano Dhe-Paganon; Hee-Won Park; Alexei Savchenko; Adelinda Yee; A. Edwards; Renaud Vincentelli; Christian Cambillau; Rosalind Kim; Sung-Hou Kim; Zihe Rao; Yunyu Shi; Thomas C. Terwilliger; Chang Yub Kim; Li-Wei Hung; Geoffrey S. Waldo; Yoav Peleg; Shira Albeck; Tamar Unger; Orly Dym

NOTE: In the version of this Review initially published, an author (B. Martin Hallberg) was left off of the author list. This information has been added to the HTML and PDF versions of the Review.In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering array of choices as to where to start. To facilitate decision-making, we describe a consensus what to try first strategy based on our collective analysis of the expression and purification of over 10,000 different proteins. This review presents methods that could be applied at the outset of any project, a prioritized list of alternate strategies and a list of pitfalls that trip many new investigators.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin

Petr G. Leiman; Marek Basler; Udupi A. Ramagopal; Jeffrey B. Bonanno; J. Michael Sauder; Stefan Pukatzki; Stephen K. Burley; Steven C. Almo; John J. Mekalanos

Protein secretion is a common property of pathogenic microbes. Gram-negative bacterial pathogens use at least 6 distinct extracellular protein secretion systems to export proteins through their multilayered cell envelope and in some cases into host cells. Among the most widespread is the newly recognized Type VI secretion system (T6SS) which is composed of 15–20 proteins whose biochemical functions are not well understood. Using crystallographic, biochemical, and bioinformatic analyses, we identified 3 T6SS components, which are homologous to bacteriophage tail proteins. These include the tail tube protein; the membrane-penetrating needle, situated at the distal end of the tube; and another protein associated with the needle and tube. We propose that T6SS is a multicomponent structure whose extracellular part resembles both structurally and functionally a bacteriophage tail, an efficient machine that translocates proteins and DNA across lipid membranes into cells.


Journal of Structural and Functional Genomics | 2007

Structural genomics of protein phosphatases.

Steven C. Almo; Jeffrey B. Bonanno; J. Michael Sauder; Spencer Emtage; Teresa P. DiLorenzo; Vladimir N. Malashkevich; Steven R. Wasserman; Subramanyam Swaminathan; Subramaniam Eswaramoorthy; Rakhi Agarwal; Desigan Kumaran; Mahendra Madegowda; Sugadev Ragumani; Yury Patskovsky; Johnjeff Alvarado; Udupi A. Ramagopal; Joana Faber-Barata; Mark R. Chance; Andrej Sali; András Fiser; Zhong Yin Zhang; David S. Lawrence; Stephen K. Burley

The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.


Journal of Structural and Functional Genomics | 2005

New York-Structural GenomiX Research Consortium (NYSGXRC): A large scale center for the protein structure initiative

Jeffrey B. Bonanno; Steven C. Almo; Anne R. Bresnick; Mark R. Chance; Andras Fiser; Subramanyam Swaminathan; J. Jiang; F.William Studier; Lawrence Shapiro; Christopher D. Lima; Theresa M. Gaasterland; Andrej Sali; Kevin Bain; Ingeborg Feil; Xia Gao; Don Lorimer; Aurora Ramos; J. Michael Sauder; Steven R. Wasserman; Spencer Emtage; Kevin L. D'Amico; Stephen K. Burley

Structural GenomiX, Inc. (SGX), four New York area institutions, and two University of California schools have formed the New York Structural GenomiX Research Consortium (NYSGXRC), an industrial/academic Research Consortium that exploits individual core competencies to support all aspects of the NIH-NIGMS funded Protein Structure Initiative (PSI), including protein family classification and target selection, generation of protein for biophysical analyses, sample preparation for structural studies, structure determination and analyses, and dissemination of results. At the end of the PSI Pilot Study Phase (PSI-1), the NYSGXRC will be capable of producing 100–200 experimentally determined protein structures annually. All Consortium activities can be scaled to increase production capacity significantly during the Production Phase of the PSI (PSI-2). The Consortium utilizes both centralized and de-centralized production teams with clearly defined deliverables and hand-off procedures that are supported by a web-based target/sample tracking system (SGX Laboratory Information Data Management System, LIMS, and NYSGXRC Internal Consortium Experimental Database, ICE-DB). Consortium management is provided by an Executive Committee, which is composed of the PI and all Co-PIs. Progress to date is tracked on a publicly available Consortium web site (http://www.nysgxrc.org) and all DNA/protein reagents and experimental protocols are distributed freely from the New York City Area institutions. In addition to meeting the requirements of the Pilot Study Phase and preparing for the Production Phase of the PSI, the NYSGXRC aims to develop modular technologies that are transferable to structural biology laboratories in both academe and industry. The NYSGXRC PI and Co-PIs intend the PSI to have a transforming effect on the disciplines of X-ray crystallography and NMR spectroscopy of biological macromolecules. Working with other PSI-funded Centers, the NYSGXRC seeks to create the structural biology laboratory of the future. Herein, we present an overview of the organization of the NYSGXRC and describe progress toward development of a high-throughput Gene→Structure platform. An analysis of current and projected consortium metrics reflects progress to date and delineates opportunities for further technology development.


Biochemistry | 2009

Computation-facilitated assignment of the function in the enolase superfamily: a regiochemically distinct galactarate dehydratase from Oceanobacillus iheyensis .

John F. Rakus; Chakrapani Kalyanaraman; Alexander A. Fedorov; Elena V. Fedorov; Fiona P. Mills-Groninger; Rafael Toro; Jeffrey B. Bonanno; Kevin Bain; J. Michael Sauder; Stephen K. Burley; Steven C. Almo; Matthew P. Jacobson; John A. Gerlt

The structure of an uncharacterized member of the enolase superfamily from Oceanobacillus iheyensis (GI 23100298, IMG locus tag Ob2843, PDB entry 2OQY ) was determined by the New York SGX Research Center for Structural Genomics (NYSGXRC). The structure contained two Mg(2+) ions located 10.4 A from one another, with one located in the canonical position in the (beta/alpha)(7)beta-barrel domain (although the ligand at the end of the fifth beta-strand is His, unprecedented in structurally characterized members of the superfamily); the second is located in a novel site within the capping domain. In silico docking of a library of mono- and diacid sugars to the active site predicted a diacid sugar as a likely substrate. Activity screening of a physical library of acid sugars identified galactarate as the substrate (k(cat) = 6.8 s(-1), K(M) = 620 microM, k(cat)/K(M) = 1.1 x 10(4) M(-1) s(-1)), allowing functional assignment of Ob2843 as galactarate dehydratase (GalrD-II). The structure of a complex of the catalytically impaired Y90F mutant with Mg(2+) and galactarate allowed identification of a Tyr 164-Arg 162 dyad as the base that initiates the reaction by abstraction of the alpha-proton and Tyr 90 as the acid that facilitates departure of the beta-OH leaving group. The enzyme product is 2-keto-d-threo-4,5-dihydroxyadipate, the enantiomer of the product obtained in the GalrD reaction catalyzed by a previously characterized bifunctional l-talarate/galactarate dehydratase (TalrD/GalrD). On the basis of the different active site structures and different regiochemistries, we recognize that these functions represent an example of apparent, not actual, convergent evolution of function. The structure of GalrD-II and its active site architecture allow identification of the seventh functionally and structurally characterized subgroup in the enolase superfamily. This study provides an additional example in which an integrated sequence- and structure-based strategy employing computational approaches is a viable approach for directing functional assignment of unknown enzymes discovered in genome projects.


Journal of Biological Chemistry | 2010

Structural Bases of PAS Domain-regulated Kinase (PASK) Activation in the Absence of Activation Loop Phosphorylation

Chintan Kikani; Stephen Antonysamy; Jeffrey B. Bonanno; Rich Romero; Feiyu Fred Zhang; Marijane Russell; Tarun Gheyi; Miyo Iizuka; Spencer Emtage; J. Michael Sauder; Benjamin E. Turk; Stephen K. Burley; Jared Rutter

Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) is an evolutionary conserved protein kinase that coordinates cellular metabolism with metabolic demand in yeast and mammals. The molecular mechanisms underlying PASK regulation, however, remain unknown. Herein, we describe a crystal structure of the kinase domain of human PASK, which provides insights into the regulatory mechanisms governing catalysis. We show that the kinase domain adopts an active conformation and has catalytic activity in vivo and in vitro in the absence of activation loop phosphorylation. Using site-directed mutagenesis and structural comparison with active and inactive kinases, we identified several key structural features in PASK that enable activation loop phosphorylation-independent activity. Finally, we used combinatorial peptide library screening to determine that PASK prefers basic residues at the P-3 and P-5 positions in substrate peptides. Our results describe the key features of the PASK structure and how those features are important for PASK activity and substrate selection.


Journal of Structural and Functional Genomics | 2009

Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies

Ursula Pieper; Ranyee Chiang; Jennifer J. Seffernick; Shoshana D. Brown; Margaret E. Glasner; Libusha Kelly; Narayanan Eswar; J. Michael Sauder; Jeffrey B. Bonanno; Subramanyam Swaminathan; Stephen K. Burley; Xiaojing Zheng; Mark R. Chance; Steven C. Almo; John A. Gerlt; Frank M. Raushel; Matthew P. Jacobson; Patricia C. Babbitt; Andrej Sali

To study the substrate specificity of enzymes, we use the amidohydrolase and enolase superfamilies as model systems; members of these superfamilies share a common TIM barrel fold and catalyze a wide range of chemical reactions. Here, we describe a collaboration between the Enzyme Specificity Consortium (ENSPEC) and the New York SGX Research Center for Structural Genomics (NYSGXRC) that aims to maximize the structural coverage of the amidohydrolase and enolase superfamilies. Using sequence- and structure-based protein comparisons, we first selected 535 target proteins from a variety of genomes for high-throughput structure determination by X-ray crystallography; 63 of these targets were not previously annotated as superfamily members. To date, 20 unique amidohydrolase and 41 unique enolase structures have been determined, increasing the fraction of sequences in the two superfamilies that can be modeled based on at least 30% sequence identity from 45% to 73%. We present case studies of proteins related to uronate isomerase (an amidohydrolase superfamily member) and mandelate racemase (an enolase superfamily member), to illustrate how this structure-focused approach can be used to generate hypotheses about sequence–structure–function relationships.


Proteins | 2010

Structure of a putative BenF-like porin from Pseudomonas fluorescens Pf-5 at 2.6 Å resolution

Parthasarathy Sampathkumar; Frances Lu; Xun Zhao; Zhenzhen Li; Jeremiah Gilmore; Kevin Bain; Marc E. Rutter; Tarun Gheyi; Kenneth D. Schwinn; Jeffrey B. Bonanno; Ursula Pieper; J. Eduardo Fajardo; András Fiser; Steven C. Almo; Subramanyam Swaminathan; Mark R. Chance; David Baker; Shane Atwell; Devon A. Thompson; J. Spencer Emtage; Stephen R. Wasserman; Andrej Sali; J. Michael Sauder; Stephen K. Burley

Gram-negative bacteria typically overcome poor permeability of outer membranes through general porins like OmpF and OmpC, which form water-filled transmembrane pores permitting diffusion of hydrophilic molecules with no particular selectivity. Many bacteria lacking such general porins use substrate-specific porins to overcome growth-limiting conditions and facilitate selective transport of metabolites. Exclusive reliance on substrate-specific porins yields lower membrane permeability to small molecules (<600 Da) versus that seen for Escherichia coli. In Pseudomonads, transit of most small molecules across the cell membrane is thought to be mediated by substrate-specific channels of the OprD superfamily. This property explains, at least in part, the high incidence of Pseudomonas aeruginosa antibiotic resistance. High-throughput DNA sequencing of the P. aeruginosa chromosome revealed the presence of 19 genes encoding structurally related, substrate-specific porins (with 30-45% pairwise amino acid sequence identity) that mediate transmembrane passage of small, water-soluble compounds. The OprD superfamily encompasses the eponymous OprD subfamily, which includes 9 P. aeruginosa proteins that convey basic amino acids and carbapenem antibiotics, and the OpdK subfamily, which includes 11 P. aeruginosa proteins that convey aromatic acids and other small aromatic compounds. Genome sequencing of other gram-negative bacteria has revealed additional members of the OprD and OpdK subfamilies in variousmorexa0» organisms, including other pseudomonads. Among the many bacteria in which OprD superfamily members have been identified are P. putida, P. fluorescens Pf-5, P. syringae, and Azotobacter vinelandii, all of which share closely related genes that encode the so-called BenF-like porins. In P. putida, benF is part of an operon involved in benzoate catabolism regulated by benR. Within this operon, benK, benE, and benF genes have been suggested to contribute toward either influx or efflux of benzoate. BLAST analysis of the amino acid sequence of P. fluorescens Pf-5 gene PFL1329 (Uniprot id: http://www.uniprot.org/uniprot/Q4KH25) against P. putida KT2440 strain identified 20 related porins. The top six hits include P. putida KT2440 genes PP1383 (annotated as BenF-like), PP2517 (annotated as BenF-like), and PP3168 (annotated as BenF), which share sequence identities of 76%, 66%, and 44% with PFL1329, respectively. The precise functions of these genes are not yet known. Therefore, we refer to the protein product of gene PFL1329 as PflBenF-like, which reflects its current annotation in the Uniprot database. Crystal structures of OprD and OpdK (vanillate specific porin), both from P. aeruginosa (designated below as PaOprD and PaOpdK, respectively) have been determined. Herein, we report the crystal structure of a putative BenF-like porin from P. fluorescens Pf-5 (PflBenF-like). For the sake of brevity, all subsequent references to the PflBenF-like porin will be made using PflBenF. X-ray crystallography revealed a canonical 18-stranded {beta}-barrel fold that forms a central pore with a diameter of {approx}4.6 E. We describe detailed comparisons of the PflBenF structure with those of PaOprD and PaOpdK.«xa0less


Biochemistry | 2012

1-methylthio-D-xylulose 5-phosphate methylsulfurylase: a novel route to 1-deoxy-D-xylulose 5-phosphate in Rhodospirillum rubrum.

Benjamin P. Warlick; Bradley S. Evans; Tobias J. Erb; Udipi A. Ramagopal; Jaya Sriram; Heidi Imker; J. Michael Sauder; Jeffrey B. Bonanno; Stephen K. Burley; F. Robert Tabita; Steven C. Almo; Jonathan S. Sweedler; John A. Gerlt

Rhodospirillum rubrum produces 5-methylthioadenosine (MTA) from S-adenosylmethionine in polyamine biosynthesis; however, R. rubrum lacks the classical methionine salvage pathway. Instead, MTA is converted to 5-methylthio-d-ribose 1-phosphate (MTR 1-P) and adenine; MTR 1-P is isomerized to 1-methylthio-d-xylulose 5-phosphate (MTXu 5-P) and reductively dethiomethylated to 1-deoxy-d-xylulose 5-phosphate (DXP), an intermediate in the nonmevalonate isoprenoid pathway [Erb, T. J., et al. (2012) Nat. Chem. Biol., in press]. Dethiomethylation, a novel route to DXP, is catalyzed by MTXu 5-P methylsulfurylase. An active site Cys displaces the enolate of DXP from MTXu 5-P, generating a methyl disulfide intermediate.


Journal of the American Chemical Society | 2017

Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides

Tyler L. Grove; Paul Michael Himes; Sungwon Hwang; Hayretin Yumerefendi; Jeffrey B. Bonanno; Brian Kuhlman; Steven C. Almo; Albert A. Bowers

Sactipeptides are ribosomally synthesized peptides that contain a characteristic thioether bridge (sactionine bond) that is installed posttranslationally and is absolutely required for their antibiotic activity. Sactipeptide biosynthesis requires a unique family of radical SAM enzymes, which contain multiple [4Fe-4S] clusters, to form the requisite thioether bridge between a cysteine and the α-carbon of an opposing amino acid through radical-based chemistry. Here we present the structure of the sactionine bond-forming enzyme CteB, from Clostridium thermocellum ATCC 27405, with both SAM and an N-terminal fragment of its peptidyl-substrate at 2.04 Å resolution. CteB has the (β/α)6-TIM barrel fold that is characteristic of radical SAM enzymes, as well as a C-terminal SPASM domain that contains two auxiliary [4Fe-4S] clusters. Importantly, one [4Fe-4S] cluster in the SPASM domain exhibits an open coordination site in absence of peptide substrate, which is coordinated by a peptidyl-cysteine residue in the bound state. The crystal structure of CteB also reveals an accessory N-terminal domain that has high structural similarity to a recently discovered motif present in several enzymes that act on ribosomally synthesized and post-translationally modified peptides (RiPPs), known as a RiPP precursor peptide recognition element (RRE). This crystal structure is the first of a sactionine bond forming enzyme and sheds light on structures and mechanisms of other members of this class such as AlbA or ThnB.

Collaboration


Dive into the Jeffrey B. Bonanno's collaboration.

Top Co-Authors

Avatar

Steven C. Almo

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrej Sali

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark R. Chance

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Subramanyam Swaminathan

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge