J. Orenstein
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Orenstein.
Nature | 1999
J. Corson; R. Mallozzi; J. Orenstein; James N. Eckstein; I. Bozovic
Although the binding of electrons into Cooper pairs is essential in forming the superconducting state, its remarkable properties—zero resistance and perfect diamagnetism—require phase coherence among the pairs as well. When coherence is lost at the transition temperature T c, pairing remains, together with phase correlations which are finite in space and time. In conventional metals, Cooper pairs with short-range phase coherence survive no more than 1 K above T c. In underdoped high-T c copper oxides, spectroscopic evidence for some form of pairing is found up to a temperature T *, which is roughly 100 K above T c (refs 1,2,3). How this pairing and Cooper-pair formation are related is a central problem in high-T c superconductivity. The nature of this relationship hinges on the extent to which phase correlations accompany pairing in the normal state. Here we report measurements of high-frequency conductivity that track the phase-correlation timeτ in the normal state of the Bi2Sr2CaCu2O8+δ family of underdoped copper oxide superconductors. Just above T c, we find that τ reflects the motion of thermally generated topological defects in the phase, or vortices,. However, vortex proliferation reduces τ to a value indistinguishable from the lifetime of normal-state electrons at 100 K, well below T *.
Nature | 2003
K. McElroy; R. W. Simmonds; J. E. Hoffman; Dung-Hai Lee; J. Orenstein; H. Eisaki; S. Uchida; J. C. Davis
The electronic structure of simple crystalline solids can be completely described in terms either of local quantum states in real space (r-space), or of wave-like states defined in momentum-space (k-space). However, in the copper oxide superconductors, neither of these descriptions alone may be sufficient. Indeed, comparisons between r-space and k-space studies of Bi2Sr2CaCu2O8+δ (Bi-2212) reveal numerous unexplained phenomena and apparent contradictions. Here, to explore these issues, we report Fourier transform studies of atomic-scale spatial modulations in the Bi-2212 density of states. When analysed as arising from quasiparticle interference, the modulations yield elements of the Fermi-surface and energy gap in agreement with photoemission experiments. The consistency of numerous sets of dispersing modulations with the quasiparticle interference model shows that no additional order parameter is required. We also explore the momentum-space structure of the unoccupied states that are inaccessible to photoemission, and find strong similarities to the structure of the occupied states. The copper oxide quasiparticles therefore apparently exhibit particle–hole mixing similar to that of conventional superconductors. Near the energy gap maximum, the modulations become intense, commensurate with the crystal, and bounded by nanometre-scale domains. Scattering of the antinodal quasiparticles is therefore strongly influenced by nanometre-scale disorder.
Nature | 2009
J. D. Koralek; Christopher Weber; J. Orenstein; B. A. Bernevig; Shou-Cheng Zhang; S. Mack; D. D. Awschalom
According to Noether’s theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron’s spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin–orbit coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be achieved in a two-dimensional electron gas, despite the presence of spin–orbit coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the ‘persistent spin helix’. SU(2) is realized, in principle, when the strengths of two dominant spin–orbit interactions, the Rashba (strength parameterized by α) and linear Dresselhaus (β1) interactions, are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron–electron interactions, but is broken by the cubic Dresselhaus term (β3) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as α approaches β1. Here we report experimental observation of the emergence of the persistent spin helix in GaAs quantum wells by independently tuning α and β1. Using transient spin-grating spectroscopy, we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant spin–orbit terms, identifying β3 as the main SU(2)-violating term in our samples. The tunable suppression of spin relaxation demonstrated in this work is well suited for application to spintronics.
Physical Review Letters | 2006
B. Andrei Bernevig; J. Orenstein; Shou-Cheng Zhang
Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constants, and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions and is generated by operators whose wave vector depends on the coupling strength. It renders the spin lifetime infinite at this wave vector, giving rise to a persistent spin helix. We obtain the spin fluctuation dynamics at, and away from, the symmetry point and suggest experiments to observe the persistent spin helix.
Science | 2011
Ruihua He; Makoto Hashimoto; H. Karapetyan; J. D. Koralek; James Hinton; J. P. Testaud; V. Nathan; Yoshiyuki Yoshida; Hong Yao; K. Tanaka; W. Meevasana; R. G. Moore; D. H. Lu; Sung-Kwan Mo; Motoyuki Ishikado; H. Eisaki; Z. Hussain; T. P. Devereaux; Steven A. Kivelson; J. Orenstein; A. Kapitulnik; Zhi-Xun Shen
Three techniques are used to probe the pseudogap state of cuprate high-temperature superconductors. The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at T* of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (Tc), entangled in an energy-momentum–dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.
Applied Physics Letters | 2008
Amit Kumar; Nikolas J. Podraza; Sava Denev; Mariola Ramirez; Ying-Hao Chu; Lane W. Martin; Jon F. Ihlefeld; J. Schubert; Darrell G. Schlom; J. Orenstein; R. Ramesh; R. W. Collins; J. L. Musfeldt; Venkatraman Gopalan
Using spectroscopic ellipsometry, the refractive index and absorption versus wavelength of the ferroelectric antiferromagnet Bismuth Ferrite, BiFeO_3 is reported. The material has a direct band-gap at 442 nm wavelength (2.81 eV). Using optical second harmonic generation, the nonlinear optical coefficients were determined to be d_15/d_22 = 0.20 +/- 0.01, d_31/d_22 = 0.35 +/- 0.02, d_33/d_22 = -11.4 +/- 0.20 and |d_22| = 298.4 +/- 6.1 pm/V at a fundamental wavelength of 800 nm.
Nature | 2005
Christopher Weber; Nuh Gedik; Joel E. Moore; J. Orenstein; J. Stephens; D. D. Awschalom
An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin that offer potential advantages in dissipation, size and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (- e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electrons spin along a given spatial direction can take on two values, ± [planck]/2 (conventionally ↑,↓), so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron–electron (e–e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but also that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e–e collisions.
Applied Physics Letters | 2008
Mariola Ramirez; Mahesh Krishnamurthi; Sava Denev; Amit Kumar; Seung-Yeul Yang; Ying-Hao Chu; Eduardo Saiz; Jan Seidel; A. P. Pyatakov; A. Bush; J. Orenstein; R. Ramesh; Venkatraman Gopalan
A prominent band centered at ∼1000–1300cm−1 and associated with resonant enhancement of two-phonon Raman scattering is reported in multiferroic BiFeO3 thin films and single crystals. A strong anomaly in this band occurs at the antiferromagnetic Neel temperature, TN∼375°C. This band is composed of three peaks, assigned to 2A4, 2E8, and 2E9 Raman modes. While all three peaks were found to be sensitive to the antiferromagnetic phase transition, the 2E8 mode, in particular, nearly disappears at TN on heating, indicating a strong spin-two-phonon coupling in BiFeO3.
Physical Review Letters | 2001
Robert A. Kaindl; Marc A. Carnahan; J. Orenstein; D. S. Chemla; Hans M. Christen; H. Y. Zhai; M. Paranthaman; Doug H. Lowndes
We report the first study of the optical conductivity of MgB2 covering the range of its lowest-energy superconducting gap. Terahertz time-domain spectroscopy is utilized to determine the complex, frequency-dependent conductivity sigma(omega) of thin films. The imaginary part reveals an inductive response due to the emergence of the superconducting condensate. The real part exhibits a strong depletion of oscillator strength near 5 meV resulting from the opening of a superconducting energy gap. The gap ratio of 2Delta0/k(B)TC approximately 1.9 is well below the weak-coupling value, pointing to complex behavior in this novel superconductor.
Applied Physics Letters | 2007
Jon F. Ihlefeld; Amit Kumar; Venkatraman Gopalan; D. G. Schlom; Y. B. Chen; X. Q. Pan; J. Schubert; X. Ke; P. Schiffer; J. Orenstein; Lane W. Martin; Ying-Hao Chu; R. Ramesh
BiFeO3 thin films have been deposited on (111) SrTiO3 single crystal substrates by reactive molecular-beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth overpressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry. Four-circle x-ray diffraction reveals phase-pure, untwinned, epitaxial, (0001)-oriented films with rocking curve full width at half maximum values as narrow as 25arcsec (0.007°). Second harmonic generation polar plots combined with diffraction establish the crystallographic point group of these untwinned epitaxial films to be 3m at room temperature.