Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.P. Rickard is active.

Publication


Featured researches published by J.P. Rickard.


Journal of Proteomics | 2013

Proteomic characterization and cross species comparison of mammalian seminal plasma

Xavier Druart; J.P. Rickard; Swetlana Mactier; Philippa L. Kohnke; C.M. Kershaw-Young; R. Bathgate; Z. Gibb; Ben Crossett; Guillaume Tsikis; Valérie Labas; Grégoire Harichaux; C. G. Grupen; S.P. de Graaf

UNLABELLED Seminal plasma contains a large protein component which has been implicated in the function, transit and survival of spermatozoa within the female reproductive tract. However, the identity of the majority of these proteins remains unknown and a direct comparison between the major domestic mammalian species has yet to be made. As such, the present study characterized and compared the seminal plasma proteomes of cattle, horse, sheep, pig, goat, camel and alpaca. GeLC-MS/MS and shotgun proteomic analysis by 2D-LC-MS/MS identified a total of 302 proteins in the seminal plasma of the chosen mammalian species. Nucleobindin 1 and RSVP14, a member of the BSP (binder of sperm protein) family, were identified in all species. Beta nerve growth factor (bNGF), previously identified as an ovulation inducing factor in alpacas and llamas, was identified in this study in alpaca and camel (induced ovulators), cattle, sheep and horse (spontaneous ovulators) seminal plasma. These findings indicate that while the mammalian species studied have common ancestry as ungulates, their seminal plasma is divergent in protein composition, which may explain variation in reproductive capacity and function. The identification of major specific proteins within seminal plasma facilitates future investigation of the role of each protein in mammalian reproduction. BIOLOGICAL SIGNIFICANCE This proteomic study is the first study to compare the protein composition of seminal plasma from seven mammalian species including two camelid species. Beta nerve growth factor, previously described as the ovulation inducing factor in camelids is shown to be the major protein in alpaca and camel seminal plasma and also present in small amounts in bull, ram, and horse seminal plasma.


Reproduction | 2014

Seminal plasma aids the survival and cervical transit of epididymal ram spermatozoa

J.P. Rickard; T. Pini; Clement Soleilhavoup; Juliette Cognie; R. Bathgate; Garry W. Lynch; G. Evans; W.M.C. Maxwell; Xavier Druart; S.P. de Graaf

Seminal plasma purportedly plays a critical role in reproduction, but epididymal spermatozoa are capable of fertilisation following deposition in the uterus, calling into question the biological requirement of this substance. Through a combination of direct observation of spermatozoa in utero using probe-based Confocal Laser Endomicroscopy, in vivo assessment of sperm fertility and in vitro analysis of various sperm functional parameters, this study investigated the role of seminal plasma in spermatozoa transit through the cervix of the ewe. Following deposition in the cervical os, epididymal spermatozoa previously exposed to seminal plasma displayed an enhanced ability to traverse the cervix as evidenced by both significantly higher pregnancy rates and numbers of spermatozoa observed at the utero-tubal junction when compared with epididymal spermatozoa not previously exposed to seminal plasma. The beneficial effect of seminal plasma on sperm transport was clearly localised to transit through the cervix as pregnancy rates of spermatozoa deposited directly into the uterus were unaffected by exposure to seminal plasma. This phenomenon was not explained by changes to sperm motion characteristics, as seminal plasma had no effect on the motility, kinematic parameters or mitochondrial membrane potential of spermatozoa. Rather, in vitro testing revealed that seminal plasma improved the ability of epididymal spermatozoa to penetrate cervical mucus recovered from ewes in oestrus. These results demonstrate that the survival and transport of ram spermatozoa through the cervix of the ewe is not linked to their motility or velocity but rather the presence of some cervical penetration trait conferred by exposure to seminal plasma.


Reproduction, Fertility and Development | 2016

Variation in seminal plasma alters the ability of ram spermatozoa to survive cryopreservation

J.P. Rickard; R.E. Schmidt; Jessie W. Maddison; R. Bathgate; Garry W. Lynch; Xavier Druart; S.P. de Graaf

Variation in the effect of seminal plasma on sperm function and fertility has been hypothesised to be due to differences between males and their seminal plasma composition. The freezing resilience of individual rams (n=17) was investigated to characterise inter-male variation. This was determined by measuring the degree of change in motility induced by cryopreservation (Experiment 1). Experiment 2 examined the effect of pooled seminal plasma from rams identified as having high or low resilience to freezing on the cryosurvival of washed spermatozoa from either high (n=3) or low (n=3) sperm freezing resilience rams. Immediately after thawing and throughout the incubation period (0-4h), spermatozoa from high-resilience rams frozen with high-resilience seminal plasma demonstrated superior motility to spermatozoa from high-resilience rams frozen with low-resilience seminal plasma (P<0.001). Similarly, spermatozoa from low-resilience rams frozen with high-resilience seminal plasma exhibited higher motility than spermatozoa from low-resilience rams frozen with low-resilience seminal plasma immediately after thawing (0h; P<0.001). The present study shows that variation in freezing resilience of ram spermatozoa is related to the source and composition of the seminal plasma.


Reproduction | 2016

Penicillamine prevents ram sperm agglutination in media that support capacitation

T. Leahy; J.P. Rickard; R. J. Aitken; S.P. de Graaf

Ram spermatozoa are difficult to capacitate in vitro. Here we describe a further complication, the unreported phenomenon of head-to-head agglutination of ram spermatozoa following dilution in the capacitation medium Tyrodes plus albumin, lactate and pyruvate (TALP). Sperm agglutination is immediate, specific and persistent and is not associated with a loss of motility. Agglutination impedes in vitro sperm handling and analysis. So the objectives of this study were to investigate the cause of sperm agglutination and potential agents which may reduce agglutination. The percentage of non-agglutinated, motile spermatozoa increased when bicarbonate was omitted from complete TALP suggesting that bicarbonate ions stimulate the agglutination process. d-penicillamine (PEN), a nucleophilic thiol, was highly effective at reducing agglutination. The inclusion of 250 μM PEN in TALP reduced the incidence of motile, agglutinated spermatozoa from 76.7 ± 2.7% to 2.8 ± 1.4%. It was then assessed if PEN (1 mM) could be included in existing ram sperm capacitation protocols (TALP +1 mM dibutyryl cAMP, caffeine and theophylline) to produce spermatozoa that were simultaneously capacitated and non-agglutinated. This protocol resulted in a sperm population which displayed high levels of tyrosine phosphorylated proteins and lipid disordered membranes (merocyanine-540) while remaining motile, viable, acrosome-intact and non-agglutinated. In summary, PEN (1 mM) can be included in ram sperm capacitation protocols to reduce sperm agglutination and allow for the in vitro assessment of ram sperm capacitation.


Journal of Proteomics | 2018

Cryopreservation and egg yolk medium alter the proteome of ram spermatozoa

Taylor Pini; J.P. Rickard; T. Leahy; Ben Crossett; Xavier Druart; S.P. de Graaf

Cryopreservation causes significant lethal and sub-lethal damage to spermatozoa. In order to improve freezing outcomes, a comprehensive understanding of sub-lethal damage is required. Cryopreservation induced changes to sperm proteins have been investigated in several species, but few have employed currently available state of the art, data independent acquisition mass spectrometry (MS) methods. We used the SWATH LC-MS method to quantitatively profile proteomic changes to ram spermatozoa following exposure to egg yolk and cryopreservation. Egg yolk contributed 15 proteins to spermatozoa, including vitellogenins, apolipoproteins and complement component C3. Cryopreservation significantly altered the abundance of 51 proteins. Overall, 27 proteins increased (e.g. SERPINB1, FER) and 24 proteins decreased (e.g. CCT subunits, CSNK1G2, TOM1L1) in frozen thawed ram spermatozoa, compared to fresh spermatozoa. Chaperones constituted 20% of the proteins lost from spermatozoa following cryopreservation. These alterations may interfere with both normal cellular functioning and the ability of frozen thawed spermatozoa to appropriately respond to stress. This is the first study to apply SWATH mass spectrometry techniques to characterise proteins contributed by egg yolk based freezing media and to profile cryopreservation induced proteomic changes to ram spermatozoa. SIGNIFICANCE This study profiles changes to the sperm proteome induced by exposure to egg yolk based media and the process of cryopreservation, and the biological consequences are discussed.


PLOS ONE | 2017

Using transrectal ultrasound to examine the effect of exogenous progesterone on early embryonic loss in sheep

J.P. Rickard; Gabrielle Ryan; Evelyn Hall; Simon P. de Graaf; Robert Hermes

The financial impact of early embryonic loss in Australia may be as high as


Animal Reproduction Science | 2016

Oestrus synchronisation and superovulation alter the production and biochemical constituents of ovine cervicovaginal mucus

Jessie W. Maddison; J.P. Rickard; Ethan Mooney; Naomi C. Bernecic; Clement Soleilhavoup; Guillaume Tsikis; Xavier Druart; T. Leahy; Simon P. de Graaf

137 million AUD/year. Embryos may be lost due to environmental conditions, or maternal factors such as nutrition or progesterone (P4) profiles. However, studies on the supplementation of P4 during early pregnancy have returned contradictory results, partly as a reliable method of detecting embryos in the early stages of gestation (<day 20) has yet be established. As such, Merino ewes (n = 62) were either not supplemented (control) or were given exogenous P4 at the time of insemination (day 0) or 3 days later (day 3). Transrectal ultrasound (TRUS) was performed on day 10, 12, 14, 17, 19 and 29 following laparoscopic artificial insemination. Transcutaneous ultrasound (TCUS) was performed on day 54 to confirm pregnancy and peripheral blood was collected for hormone analysis on day 19 to compare the accuracy of all three pregnancy diagnosis methods. Data were then analysed in developmental periods. The percentage of ewes detected as pregnant by TRUS during pre-, peri- and post implantation was 66% (41/62; day 12 and 14), 61% (38/62; day 17 and 19) and 58% (36/62; day 29), respectively. TCUS during established gestation recorded a pregnancy rate of 60% (37/62). The sensitivity of TRUS to correctly diagnose ewes as pregnant during pre-, peri- and post implantation was 68% (25/37), 89% (33/37) and 100% (36/36), respectively, while the sensitivity to correctly identify multiples was 49% (16/33), 60% (21/35) and 97% (34/35), respectively (P<0.05). The majority of embryonic loss occurred between pre- and peri- implantation (0.9±0.15 per ewe; P<0.001). No further loss was recorded after this point. Ewes that were given P4 at day 0 had significantly higher embryonic loss (77%) compared to the control (52%) and day 3-ewes (56%; P<0.05). These results show TRUS is a viable tool for investigating early embryonic loss and that the variability noted in previous P4 supplementation studies may be due to variation in time and length of treatment.


Journal of Proteomics | 2017

Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe

Jessie W. Maddison; J.P. Rickard; Naomi C. Bernecic; Guillaume Tsikis; Clement Soleilhavoup; Valérie Labas; Lucie Combes-Soia; Grégoire Harichaux; Xavier Druart; T. Leahy; Simon P. de Graaf

Controlled breeding programmes utilising exogenous hormones are common in the Australian sheep industry, however the effects of such programmes on cervicovaginal mucus properties are lacking. As such, the aim of this study was to investigate cervicovaginal (CV) mucus from naturally cycling (NAT), progesterone synchronised (P4), prostaglandin synchronised (PGF2α), and superovulated (SOV) Merino ewes. Experiment 1; volume, colour, spinnbarkeit, chemical profile and protein concentration of mucus (NAT, P4, PGF2α and SOV; n=5 ewes/treatment) during the follicular (5 d) and luteal phases (8 d) was investigated. Experiment 2; in vivo mucus pH and in vitro mucus penetration by frozen-thawed spermatozoa (NAT, P4 and SOV; n=11 ewes/treatment) was investigated over oestrus (2 d) and the mid-luteal phase (pH only, 2 d). Oestrus mucus was more abundant, clearer in colour and less proteinaceous than luteal phase mucus (p<0.05). SOV increased mucus production and protein concentration (p<0.05) while PGF2α reduced mucus volume (p<0.05). Mucus pH (oestrus 6.2-6.5), chemical profile and mucus penetration by sperm were unchanged (p>0.05). Results indicate that exogenous hormones used for controlled breeding affect cervicovaginal mucus production, but few other tested characteristics. Further research is required to explain fertility differences between synchronised and naturally cycling animals following cervical AI.


Reproduction | 2016

D-penicillamine prevents ram sperm agglutination by reducing the disulphide bonds of a copper-binding sperm protein

T. Leahy; J.P. Rickard; R. J. Aitken; S.P. de Graaf

Although essential for artificial insemination (AI) and MOET (multiple ovulation and embryo transfer), oestrus synchronisation and superovulation are associated with increased female reproductive tract mucus production and altered sperm transport. The effects of such breeding practices on the ovine cervicovaginal (CV) mucus proteome have not been detailed. The aim of this study was to qualitatively and quantitatively investigate the Merino CV mucus proteome in naturally cycling (NAT) ewes at oestrus and mid-luteal phase, and quantitatively compare CV oestrus mucus proteomes of NAT, progesterone synchronised (P4) and superovulated (SOV) ewes. Quantitative analysis revealed 60 proteins were more abundant during oestrus and 127 were more abundant during the luteal phase, with 27 oestrus specific and 40 luteal specific proteins identified. The oestrus proteins most disparate in abundance compared to mid-luteal phase were ceruloplasmin (CP), chitinase-3-like protein 1 (CHI3L1), clusterin (CLU), alkaline phosphatase (ALPL) and mucin-16 (MUC16). Exogenous hormones greatly altered the proteome with 51 and 32 proteins more abundant and 98 and 53 proteins less abundant, in P4 and SOV mucus, respectively when compared to NAT mucus. Investigation of the impact of these proteomic changes on sperm motility and longevity within mucus may help improve sperm transport and fertility following cervical AI. SIGNIFICANCE This manuscript is the first to detail the proteome of ovine cervicovaginal mucus using qualitative and quantitative proteomic methods over the oestrous cycle in naturally cycling ewes, and also after application of common oestrus synchronisation and superovulation practices. The investigation of the mucus proteome throughout both the follicular and luteal periods of the oestrous cycle, and also after oestrous synchronisation and superovulation provides information about the endocrine control and the effects that exogenous hormones have on protein expression in the female reproductive tract. This information contributes to the field by providing important information on the changes that occur to the cervicovaginal mucus proteome after use of exogenous hormones in controlled breeding programs, which are commonly used on farm and also in a research setting.


Journal of Proteome Research | 2016

Proteomic Investigation of Ram Spermatozoa and the Proteins Conferred by Seminal Plasma

Taylor Pini; T. Leahy; Clement Soleilhavoup; Guillaume Tsikis; Valérie Labas; Lucie Combes-Soia; Grégoire Harichaux; J.P. Rickard; Xavier Druart; Simon P. de Graaf

Head-to-head agglutination of ram spermatozoa is induced by dilution in the Tyrodes capacitation medium with albumin, lactate and pyruvate (TALP) and ameliorated by the addition of the thiol d-penicillamine (PEN). To better understand the association and disassociation of ram spermatozoa, we investigated the mechanism of action of PEN in perturbing sperm agglutination. PEN acts as a chelator of heavy metals, an antioxidant and a reducing agent. Chelation is not the main mechanism of action, as the broad-spectrum chelator ethylenediaminetetraacetic acid and the copper-specific chelator bathocuproinedisulfonic acid were inferior anti-agglutination agents compared with PEN. Oxidative stress is also an unlikely mechanism of sperm association, as PEN was significantly more effective in ameliorating agglutination than the antioxidants superoxide dismutase, ascorbic acid, α-tocopherol and catalase. Only the reducing agents cysteine and DL-dithiothreitol displayed similar levels of non-agglutinated spermatozoa at 0 h compared with PEN but were less effective after 3 h of incubation (37 °C). The addition of 10 µM Cu(2+) to 250 µM PEN + TALP caused a rapid reversion of the motile sperm population from a non-agglutinated state to an agglutinated state. Other heavy metals (cobalt, iron, manganese and zinc) did not provoke such a strong response. Together, these results indicate that PEN prevents sperm association by the reduction of disulphide bonds on a sperm membrane protein that binds copper. ADAM proteins are possible candidates, as targeted inhibition of the metalloproteinase domain significantly increased the percentage of motile, non-agglutinated spermatozoa (52.0% ± 7.8) compared with TALP alone (10.6% ± 6.1).

Collaboration


Dive into the J.P. Rickard's collaboration.

Top Co-Authors

Avatar

T. Leahy

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xavier Druart

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clement Soleilhavoup

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Guillaume Tsikis

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grégoire Harichaux

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge