J. Prakash Maran
Kongu Engineering College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Prakash Maran.
Carbohydrate Polymers | 2013
J. Prakash Maran; S. Manikandan; K. Thirugnanasambandham; C. Vigna Nivetha; R. Dinesh
In this study, ultrasound assisted extraction (UAE) conditions on the yield of polysaccharide from corn silk were studied using three factors, three level Box-Behnken response surface design. Process parameters, which affect the efficiency of UAE such as extraction temperature (40-60 °C), time (10-30 min) and solid-liquid ratio (1:10-1:30 g/ml) were investigated. The results showed that, the extraction conditions have significant effects on extraction yield of polysaccharide. The obtained experimental data were fitted to a second-order polynomial equation using multiple regression analysis with high coefficient of determination value (R(2)) of 0.994. An optimization study using Derringers desired function methodology was performed and the optimal conditions based on both individual and combinations of all independent variables (extraction temperature of 56 °C, time of 17 min and solid-liquid ratio of 1:20 g/ml) were determined with maximum polysaccharide yield of 6.06%, which was confirmed through validation experiments.
Carbohydrate Polymers | 2013
J. Prakash Maran; V. Sivakumar; R. Sridhar; K. Thirugnanasambandham
The film forming solutions composed of tapioca (cassava) starch (1-3 g), glycerol (0.5-1.0 ml), agar (0.5-1.0 g) and span 80 (0.1-0.5 ml) were prepared according to a three-level, four-factor Box-Behnken response surface experimental design. The films were obtained by casting method and they are homogenous and transparent. The influence of film composition (tapioca starch, glycerol, agar and span80) on the barrier and optical properties of the tapioca starch based edible films was evaluated. The results showed that, hydrophilic nature and plasticizing effect of glycerol increases the water vapor permeability, oxygen permeability, moisture content, solubility and swelling capacity of the films. But surfactant (span80) incorporation reduces the mobility of the polysaccharide matrix and decreases the barrier properties of the films. Transparency of the films was influenced by plasticizer and surfactant concentration due to the dilution effect of glycerol and span80. The results were analyzed by Pareto analysis of variance (ANOVA) and second-order polynomial models were developed using multiple regression analysis. The models developed from the experimental design were predictive and good fit with the experimental data with high coefficient of determination (R(2)) values (more than 0.95). The optimized conditions were obtained were tapioca starch of 1.95 g, glycerol of 0.8 ml, agar of 0.7 g and span 80 of 0.3 ml, respectively.
Carbohydrate Polymers | 2013
J. Prakash Maran; V. Mekala; S. Manikandan
Polysaccharides from pumpkin were extracted by ultrasound-assisted extraction technology using four factors at five levels central composite rotatable response surface design (CCRD). On using single factor analysis, process variables such as extraction temperature (50-70 °C), power of ultrasound (50-70 W), time (15-25 min) and solid-liquid ratio (1:10-1:20 g/ml) were selected. Experiments were conducted to evaluate the effects of four independent variables on the maximum extraction yield of polysaccharides. From the experimental data, second order polynomial mathematical model were developed with high coefficient of determination values (R(2)>0.96). From response surface plots, temperature and ultrasound power exhibited independent and interactive effects on the extraction yields. Extraction temperature of 70 °C, ultrasound power of 70 W, time of 23 min and solid-liquid ratio of 1:10 g/ml were determined as optimal conditions with a maximum polysaccharides yield of 16.21%, which was confirmed through the validation of the experiments.
Carbohydrate Polymers | 2013
J. Prakash Maran; V. Sivakumar; K. Thirugnanasambandham; R. Sridhar
In this study, microwave-assisted extraction was applied for pectin extraction from the dried orange peel and Box-Behnken response surface design was used to study and optimize the effects of processing variables (microwave power, irradiation time, pH and solid-liquid ratio) on the yield of pectin. The amount of pectin extracted increased with increasing microwave power, while it reduces as the time, pH and solid-liquid ratio increased. From the results, second order polynomial model was developed and it adequately explained the data variation and significantly represented the actual relationship between independent variables and the response. An optimization study using Derringers desired function methodology was performed and optimal conditions based on both individual and combinations of all independent variables (microwave power of 422W, irradiation time of 169 s, pH of 1.4 and solid-liquid ratio of 1:16.9 g/ml) were determined with maximum pectin yield of 19.24%, which was confirmed through validation experiments.
Journal of Hazardous Materials | 2011
R. Sridhar; V. Sivakumar; V. Prince Immanuel; J. Prakash Maran
The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m(3) depending on the operating conditions. Under optimal operating condition such as 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US
Carbohydrate Polymers | 2014
J. Prakash Maran; V. Sivakumar; K. Thirugnanasambandham; R. Sridhar
/m(3). The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse.
International Journal of Biological Macromolecules | 2015
I. Ganesh Moorthy; J. Prakash Maran; S. Naganyashree; C.S. Shivamathi
In this present study, microwave-assisted extraction (MAE) was applied to extraction of pectin from waste Citrullus Lanatus fruit rinds. Extraction parameters which are employed in this study are microwave power (160-480 W), irradiation time (60-180s), pH (1-2) and solid-liquid ratio (1:10-1: 30 g/ml) and they were optimized using a four factor three levels Box-Behnken response surface design (BBD) coupled with desirability function methodology. The results showed that, all the process variables have significant effect on the extraction yield of pectin. Optimum MAE conditions for the highest pectin yield from waste C. Lanatus fruit rinds (25.79%) were obtained with microwave power of 477 W, irradiation time of 128 s, pH of 1.52, solid-liquid ratio of 1:20.3g/ml respectively. Validation experiment results were well agreed with predicted value.
Ultrasonics Sonochemistry | 2015
J. Prakash Maran; B. Priya
Ultrasound assisted extraction of pectin from waste pomegranate peel was investigated and optimized using Box-Behnken response surface design coupled with numerical optimization technique. The individual and interactive effect of process variables (solid-liquid ratio, pH, extraction time and temperature) on the pectin yield was studied. The experimental data obtained were analyzed by Pareto analysis of variance (ANOVA) and second-order polynomial models were developed using multiple regression analysis. The models developed from the experimental design were predictive and good fit with the experimental data with high coefficient of determination (R(2)) value. The optimal extraction condition was found to be 1:17.52 g/ml of solid-liquid ratio, 1.27 of pH, 28.31 min of extraction time and 61.90 °C of extraction temperature respectively. Under the optimal conditions, experimental yield was very close to the predicted values.
Carbohydrate Polymers | 2015
J. Prakash Maran; B. Priya
The present study is to evaluate and compare the prediction and simulating efficiencies of response surface methodology (RSM) and artificial neural network (ANN) based models on fatty acid methyl esters (FAME) yield achieved from muskmelon oil (MMO) under ultrasonication by two step in situ process. In first in situ process, free fatty acid content of MMO was reduced from 6.43% to 0.91% using H2SO4 as acid catalyst and organic phase in the first step was subjected to second reaction by adding KOH in methanol as basic catalyst. The influence of process variables (methanol to oil molar ratio, catalyst concentration, reaction temperature and reaction time) on conversion of FAME (second step) was investigated by central composite rotatable design (CCRD) of RSM and Multi-Layer Perceptron (MLP) neural network with the topology of 4-7-1. Both (RSM and ANN) were statistically compared by the coefficient of determination, root mean square error and absolute average deviation, based on the validation data set. The coefficient of determination (R(2)) calculated from the validation data for RSM and ANN models were 0.869 and 0.991 respectively. While both models showed good predictions in this study. But, the ANN model was more precise compared to the RSM model and it showed that, ANN is to be a powerful tool for modeling and optimizing FAME production.
International Journal of Biological Macromolecules | 2015
K. Thirugnanasambandham; V. Sivakumar; J. Prakash Maran
In this study, an efficient ultrasound-assisted extraction (UAE) of pectin from sisal waste was investigated and optimized. Response surface methodology (RSM) based on a three-level four-factor Box-Behnken response surface design (BBD) was employed to optimize the extraction conditions (ultrasonic power, extraction temperature, extraction time and solid-liquid ratio). Analysis of variance showed that the contribution of a quadratic model was significant for the pectin extraction yield. The experimental yield (29.32%) was obtained under the optimal condition (ultrasonic power of 61 W, temperature of 50°C, time of 26 min and SL ratio of 1:28 g/ml) was well agreement with predicted values. Therefore, ultrasound-assisted extraction could be used as an alternative method to extract pectin from sisal waste with the advantages of lower extraction temperatures, shorter extraction time and reduced energy consumption.