J. Rana
Inter-University Centre for Astronomy and Astrophysics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. Rana.
Science | 2017
Gregg Hallinan; A. Corsi; K. Mooley; Kenta Hotokezaka; Ehud Nakar; Mansi M. Kasliwal; David L. Kaplan; Dale A. Frail; S. T. Myers; Tara Murphy; Kishalay De; D. Dobie; J. R. Allison; Keith W. Bannister; V. Bhalerao; P. Chandra; T. E. Clarke; Simona Giacintucci; A. Y. Q. Ho; Assaf Horesh; Namir E. Kassim; S. R. Kulkarni; E. Lenc; Felix J. Lockman; C. Lynch; D. Nichols; S. Nissanke; N. Palliyaguru; W. M. Peters; T. Piran
GROWTH observations of GW170817 The gravitational wave event GW170817 was caused by the merger of two neutron stars (see the Introduction by Smith). In three papers, teams associated with the GROWTH (Global Relay of Observatories Watching Transients Happen) project present their observations of the event at wavelengths from x-rays to radio waves. Evans et al. used space telescopes to detect GW170817 in the ultraviolet and place limits on its x-ray flux, showing that the merger generated a hot explosion known as a blue kilonova. Hallinan et al. describe radio emissions generated as the explosion slammed into the surrounding gas within the host galaxy. Kasliwal et al. present additional observations in the optical and infrared and formulate a model for the event involving a cocoon of material expanding at close to the speed of light, matching the data at all observed wavelengths. Science, this issue p. 1565, p. 1579, p. 1559; see also p. 1554 Radio observations constrain the energy and geometry of relativistic material ejected from a binary neutron star merger. Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultrarelativistic jet, viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will enable observers to distinguish between these models, and the angular velocity and geometry of the debris will be directly measurable by very long baseline interferometry.
The Astrophysical Journal | 2016
Mansi M. Kasliwal; S. B. Cenko; L. P. Singer; A. Corsi; Y. Cao; Tom A. Barlow; Varun Bhalerao; Eric C. Bellm; David O. Cook; G. Duggan; Raphael Ferretti; Dale A. Frail; Assaf Horesh; R. Kendrick; S. R. Kulkarni; R. Lunnan; N. Palliyaguru; R. R. Laher; Frank J. Masci; I. Manulis; Adam A. Miller; Peter E. Nugent; Daniel A. Perley; Thomas A. Prince; Robert Michael Quimby; J. Rana; Umaa Rebbapragada; Branimir Sesar; A. Singhal; Jason A. Surace
The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational-wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the northern night sky, due both to Sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 126 deg^2, after extensive filtering, eight candidates were deemed worthy of additional follow-up. Within two hours, all eight were spectroscopically classified by the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Jansky Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational-wave trigger, which is unsurprising given that GW150914 came from the merger of two stellar-mass black holes. This end-to-end discovery and follow-up campaign bodes well for future searches in this post-detection era of gravitational waves.