Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Rhodes is active.

Publication


Featured researches published by J. Rhodes.


The Astrophysical Journal | 2012

The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample

Nao Suzuki; D. Rubin; C. Lidman; Gregory Scott Aldering; R. Amanullah; K. Barbary; L. F. Barrientos; J. Botyánszki; Mark Brodwin; Natalia Connolly; Kyle S. Dawson; Arjun Dey; Mamoru Doi; Megan Donahue; Susana Elizabeth Deustua; Peter R. M. Eisenhardt; Erica Ellingson; L. Faccioli; V. Fadeyev; H. K. Fakhouri; Andrew S. Fruchter; David G. Gilbank; Michael D. Gladders; G. Goldhaber; Anthony H. Gonzalez; Ariel Goobar; A. Gude; T. Hattori; Henk Hoekstra; E. Y. Hsiao

We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.


The Astrophysical Journal | 2009

Stellar and Total Baryon Mass Fractions in Groups and Clusters Since Redshift 1

S. Giodini; D. Pierini; Alexis Finoguenov; G. W. Pratt; Hans Boehringer; Alexie Leauthaud; L. Guzzo; H. Aussel; M. Bolzonella; P. Capak; M. Elvis; G. Hasinger; O. Ilbert; J. Kartaltepe; A. M. Koekemoer; S. J. Lilly; Richard Massey; H. J. McCracken; J. Rhodes; M. Salvato; D. B. Sanders; N. Z. Scoville; Shunji S. Sasaki; Vernesa Smolčić; Y. Taniguchi; D. Thompson

We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 ≤ z ≤ 1 are selected from the COSMOS 2 deg^2 survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R_(500). The total sample of 118 groups and clusters with z ≤ 1 spans a range in M_(500) of ~10^(13)-10^(15) M_☉. We find that the stellar mass fraction associated with galaxies at R_(500) decreases with increasing total mass as M^(–0.37 ± 0.04)_(500), independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f^(stars+gas)_(500) = f^(stars)_(500) + f^(gas)_(500)) is found to increase by ~25%, when M_(500) increases from = 5 × 10^(13) M_☉ to = 7 × 10^(14) M_☉. After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3σ for groups of = 5 × 10^(13) M_☉. The discrepancy decreases toward higher total masses, such that it is 1σ at = 7 × 10^(14) M_☉. We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.


Monthly Notices of the Royal Astronomical Society | 2011

Creation of cosmic structure in the complex galaxy cluster merger Abell 2744

J. Merten; D. Coe; Renato de Alencar Dupke; Richard Massey; Adi Zitrin; E. S. Cypriano; Nobuhiro Okabe; Brenda Frye; Filiberto G. Braglia; Y. Jimenez-Teja; N. Benítez; Tom Broadhurst; J. Rhodes; Massimo Meneghetti; Leonidas A. Moustakas; Laerte Sodré; Jessica E. Krick; Joel N. Bregman

We present a detailed strong lensing, weak lensing and X-ray analysis of Abell 2744 (z = 0:308), one of the most actively merging galaxy clusters known. It appears to have unleashed ‘dark’, ‘ghost’, ‘bullet’ and ‘stripped’ substructures, each 10 14 M . The phenomenology is complex and will present a challenge for numerical simulations to reproduce. With new, multiband HST imaging, we identify 34 strongly-lensed images of 11 galaxies around the massive Southern ‘core’. Combining this with weak lensing data from HST, VLT and Subaru, we produce the most detailed mass map of this cluster to date. We also perform an independent analysis of archival Chandra X-ray imaging. Our analyses support a recent claim that the Southern core and Northwestern substructure are post-merger and exhibit morphology similar to the Bullet Cluster viewed from an angle. From the separation between X-ray emitting gas and lensing mass in the Southern core, we derive a new and independent constraint on the self-interaction cross section of dark matter particles =m


Monthly Notices of the Royal Astronomical Society | 2012

Image analysis for cosmology: results from the GREAT10 Galaxy Challenge

Thomas D. Kitching; Sreekumar T. Balan; Sarah Bridle; N. Cantale; F. Courbin; T. F. Eifler; Marc Gentile; M. S. S. Gill; Stefan Harmeling; Catherine Heymans; Michael Hirsch; K. Honscheid; Tomasz Kacprzak; D. Kirkby; Daniel Margala; Richard Massey; P. Melchior; G. Nurbaeva; K. Patton; J. Rhodes; Barnaby Rowe; Andy Taylor; M. Tewes; Massimo Viola; Dugan Witherick; Lisa Voigt; J. Young; Joe Zuntz

We present the results from the first public blind point-spread function (PSF) reconstruction challenge, the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge. Reconstruction of a spatially varying PSF, sparsely sampled by stars, at non-star positions is a critical part in the image analysis for weak lensing where inaccuracies in the modeled ellipticity e and size R^2 can impact the ability to measure the shapes of galaxies. This is of importance because weak lensing is a particularly sensitive probe of dark energy and can be used to map the mass distribution of large scale structure. Participants in the challenge were presented with 27,500 stars over 1300 images subdivided into 26 sets, where in each set a category change was made in the type or spatial variation of the PSF. Thirty submissions were made by nine teams. The best methods reconstructed the PSF with an accuracy of σ(e) ≈ 2.5 × 10^(–4) and σ(R^2)/R^2 ≈ 7.4 × 10^(–4). For a fixed pixel scale, narrower PSFs were found to be more difficult to model than larger PSFs, and the PSF reconstruction was severely degraded with the inclusion of an atmospheric turbulence model (although this result is likely to be a strong function of the amplitude of the turbulence power spectrum).


The Astrophysical Journal | 2015

CLASH: The CONCENTRATION-MASS RELATION of GALAXY CLUSTERS

Julian Merten; M. Meneghetti; Marc Postman; Keiichi Umetsu; Adi Zitrin; Elinor Medezinski; M. Nonino; Anton M. Koekemoer; P. Melchior; D. Gruen; Leonidas A. Moustakas; Matthias Bartelmann; Ole Host; Megan Donahue; D. Coe; A. Molino; S. Jouvel; A. Monna; S. Seitz; Nicole G. Czakon; Doron Lemze; Jack Sayers; I. Balestra; Piero Rosati; N. Benítez; A. Biviano; R. J. Bouwens; L. Bradley; Tom Broadhurst; Mauricio Carrasco

We present a new determination of the concentration–mass (c–M) relation for galaxy clusters based on our ncomprehensive lensing analysis of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova nSurvey with Hubble (CLASH). Our sample spans a redshift range between 0.19 and 0.89. We combine weak-lensing nconstraints from the Hubble Space Telescope (HST) and from ground-based wide-field data with strong lensing constraints from HST. The results are reconstructions of the surface-mass density for all CLASH clusters on multi-scale grids. Our derivation of Navarro–Frenk–White parameters yields virial masses between n0.53 × 10^(15) M_⊙ h and 1.76 × 10^(15) M_⊙ h and the halo concentrations are distributed around c_(200c) ∼ 3.7 with a n1σ significant negative slope with cluster mass. We find an excellent 4% agreement in the median ratio of our nmeasured concentrations for each cluster and the respective expectation from numerical simulations after accounting for the CLASH selection function based on X-ray morphology. The simulations are analyzed in two dimensions to account for possible biases in the lensing reconstructions due to projection effects. The theoretical c–M relation from our X-ray selected set of simulated clusters and the c–M relation derived directly from the CLASH data agree at the 90% confidence level.


Astrophysical Journal Supplement Series | 2013

Evolution of galaxies and their environments at z = 0.1-3 in COSMOS

N. Z. Scoville; S. Arnouts; H. Aussel; Andrew J. Benson; A. Bongiorno; Kevin Bundy; M. A. A. Calvo; P. Capak; Marcella Carollo; F. Civano; James Dunlop; M. Elvis; Andreas L. Faisst; A. Finoguenov; Hai Fu; Mauro Giavalisco; Qi Guo; O. Ilbert; A. Iovino; Masaru Kajisawa; J. Kartaltepe; Alexie Leauthaud; O. Le Fèvre; E. LeFloch; S. J. Lilly; Charles T. Liu; S. Manohar; Richard Massey; Daniel Masters; H. J. McCracken

Large-scale structures (LSSs) out to z 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.


Monthly Notices of the Royal Astronomical Society | 2005

A deep Chandra survey of the Groth Strip – I. The X-ray data

K. Nandra; E. S. Laird; Kurt L. Adelberger; Jonathan P. Gardner; R. F. Mushotzky; J. Rhodes; Charles C. Steidel; Harry I. Teplitz; Keith A. Arnaud

We present the results of a 200-ks Chandra observation of part of the Groth Strip region, using the ACIS-I instrument. We present a relatively simple method for the detection of point sources and calculation of limiting sensitivities, which we argue is at least as sensitive and more self-consistent than previous methods presented in the literature. A total of 158 distinct X-ray sources are included in our point-source catalogue in the ACIS-I area. The number counts show a relative dearth of X-ray sources in this region. For example, at a flux limit of 10 -15 erg cm -2 s -1 , around 20 per cent more soft-band sources are detected in the HDF-N and almost 50 per cent more in the ELAIS-N1 field, which we have analysed by the same method for comparison. We find, however, that these differences are consistent with Poisson variations at <2σ significance, and therefore there is no evidence for cosmic variance based on these number counts alone. We determine the average spectra of the objects and find a marked difference between the soft-band-selected sources, which have r = 1.9 typical of unobscured active galactic nuclei (AGN), and the hard-band-selected sources, which have r = 1.0. Reassuringly, the sample as a whole has a mean spectrum of Γ = 1.4 ± 0.1, the same as the X-ray background. None the less, our results imply that the fraction of sources with significant obscuration is only ∼25 per cent, much less than predicted by standard AGN population synthesis models. This is confirmed by direct spectral fitting, with only a handful of objects showing evidence for absorption. After accounting for absorption, all objects are consistent with a mean intrinsic spectrum of r = 1.76 ± 0.08, very similar to local Seyfert galaxies. The survey area is distinguished by having outstanding multiwaveband coverage. Comparison with these observations and detailed discussion of the X-ray source properties will be presented in future papers.


The Astrophysical Journal | 2014

THE MUSIC OF CLASH: PREDICTIONS ON THE CONCENTRATION-MASS RELATION

M. Meneghetti; E. Rasia; J. Vega; Julian Merten; Marc Postman; Gustavo Yepes; Federico Sembolini; Megan Donahue; S. Ettori; Keiichi Umetsu; I. Balestra; Matthias Bartelmann; N. Benítez; A. Biviano; R. J. Bouwens; L. Bradley; Tom Broadhurst; D. Coe; Nicole G. Czakon; M. De Petris; Holland C. Ford; Carlo Giocoli; Stefan Gottlöber; C. Grillo; L. Infante; S. Jouvel; D. Kelson; A. Koekemoer; Ofer Lahav; Doron Lemze

We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ~11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.


The Astrophysical Journal | 2010

The buildup of the Hubble sequence in the cosmos field

P. Oesch; C. M. Carollo; R. Feldmann; Oliver Hahn; S. J. Lilly; M. Sargent; Claudia Scarlata; M. C. Aller; H. Aussel; M. Bolzonella; T. J. Bschorr; Kevin Bundy; P. Capak; O. Ilbert; Jean-Paul Kneib; Anton M. Koekemoer; K. Kovac; Alexie Leauthaud; E. Le Floc'h; Richard Massey; H. J. McCracken; L. Pozzetti; A. Renzini; J. Rhodes; M. Salvato; David B. Sanders; N. Z. Scoville; Kartik Sheth; Y. Taniguchi; D. Thompson

We use similar to 8600 COSMOS galaxies at mass scales textgreater 5 x 10(10)M(circle dot) to study how the morphological mix of massive ellipticals, bulge-dominated disks, intermediate-bulge disks, disk-dominated galaxies, and irregular systems evolves from z = 0.2 to z = 1. The morphological evolution depends strongly on mass. At M textgreater 3 x 10(11) M(circle dot), no evolution is detected in the morphological mix: ellipticals dominate since z = 1, and the Hubble sequence has quantitatively settled down by this epoch. At the 10(11)M(circle dot) mass scale, little evolution is detected, which can be entirely explained by major mergers. Most of the morphological evolution from z = 1 to z = 0.2 takes place at masses 5 x 10(10)-10(11) M(circle dot), where (1) the fraction of spirals substantially drops and the contribution of early types increases. This increase is mostly produced by the growth of bulge-dominated disks, which vary their contribution from similar to 10% at z = 1 to textgreater30% at z = 0.2 (for comparison, the elliptical fraction grows from similar to 15% to similar to 20%). Thus, at these masses, transformations from late to early types result in diskless elliptical morphologies with a statistical frequency of only 30%-40%. Otherwise, the processes which are responsible for the transformations either retain or produce a non-negligible disk component. (2) The disk-dominated galaxies, which contribute similar to 15% to the intermediate-mass galaxy population at z = 1, virtually disappear by z = 0.2. The merger rate since z = 1 is too low to account for the disappearance of these massive disk-dominated systems, which most likely grow a bulge via secular evolution.


Monthly Notices of the Royal Astronomical Society | 2008

Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry

F. B. Abdalla; Adam Amara; P. Capak; E. S. Cypriano; Ofer Lahav; J. Rhodes

We study in detail the photometric redshift requirements needed for tomographic weak gravitational lensing in order to measure accurately the dark energy equation of state. In particular, we examine how ground-based photometry (u, g, r, i, z, y) can be complemented by space-based near-infrared (near-IR) photometry (J, H), e.g. onboard the planned DUNE satellite. Using realistic photometric redshift simulations and an artificial neural network photo-z method we evaluate the figure of merit for the dark energy parameters (w0, wa). We consider a DUNE-like broad optical filter supplemented with ground-based multiband optical data from surveys like the Dark Energy Survey, Pan-STARRS and LSST. We show that the dark energy figure of merit would be improved by a factor of 1.3‐1.7 if IR filters are added onboard DUNE. Furthermore we show that with IR data catastrophic photo-z outliers can be removed effectively. There is an interplay between the choice of filters, the magnitude limits and the removal of outliers. We draw attention to the dependence of the results on the galaxy formation scenarios encoded into the mock galaxies, e.g. the galaxy reddening. For example, very deep u-band data could be as effective as the IR. We also find that about 10 5 ‐10 6 spectroscopic redshifts are needed for calibration of the full survey.

Collaboration


Dive into the J. Rhodes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Goldhaber

University of California

View shared research outputs
Top Co-Authors

Avatar

P. Capak

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. M. Carollo

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew S. Fruchter

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

C. Akerlof

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

C. Day

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Bebek

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge