Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Robert Manak is active.

Publication


Featured researches published by J. Robert Manak.


Science | 2011

The ecoresponsive genome of Daphnia pulex

John K. Colbourne; Michael E. Pfrender; Donald L. Gilbert; W. Kelley Thomas; Abraham Tucker; Todd H. Oakley; Shin-ichi Tokishita; Andrea Aerts; Georg J. Arnold; Malay Kumar Basu; Darren J Bauer; Carla E. Cáceres; Liran Carmel; Claudio Casola; Jeong Hyeon Choi; John C. Detter; Qunfeng Dong; Serge Dusheyko; Brian D. Eads; Thomas Fröhlich; Kerry A. Geiler-Samerotte; Daniel Gerlach; Phil Hatcher; Sanjuro Jogdeo; Jeroen Krijgsveld; Evgenia V. Kriventseva; Dietmar Kültz; Christian Laforsch; Erika Lindquist; Jacqueline Lopez

The Daphnia genome reveals a multitude of genes and shows adaptation through gene family expansions. We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia’s genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.


Nature Genetics | 2009

The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer

Mark Pomerantz; Nasim Ahmadiyeh; Li Jia; Paula Herman; Michael P. Verzi; Harshavardhan Doddapaneni; Christine A. Beckwith; Jennifer A. Chan; Adam Hills; Matthew M. Davis; Keluo Yao; Sarah M. Kehoe; Heinz-Josef Lenz; Christopher A. Haiman; Chunli Yan; Brian E. Henderson; Baruch Frenkel; Jordi Barretina; Adam J. Bass; Josep Tabernero; José Baselga; Meredith M. Regan; J. Robert Manak; Ramesh A. Shivdasani; Gerhard A. Coetzee; Matthew L. Freedman

An inherited variant on chromosome 8q24, rs6983267, is significantly associated with cancer pathogenesis. We present evidence that the region harboring this variant is a transcriptional enhancer, that the alleles of rs6983267 differentially bind transcription factor 7-like 2 (TCF7L2) and that the risk region physically interacts with the MYC proto-oncogene. These data provide strong support for a biological mechanism underlying this non-protein-coding risk variant.


PLOS Genetics | 2011

Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo

Chung Yi Nien; Hsiao Lan Liang; Stephen Butcher; Yujia Sun; Shengbo Fu; Tenzin Gocha; Nikolai Kirov; J. Robert Manak; Christine Rushlow

In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic “hotspot” regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo.


Nature | 2002

Role for a Drosophila Myb-containing protein complex in site-specific DNA replication

Eileen L. Beall; J. Robert Manak; Sharleen Zhou; Maren Bell; Joseph S. Lipsick; Michael R. Botchan

There is considerable interest in the developmental, temporal and tissue-specific patterns of DNA replication in metazoans. Site-specific DNA replication at the chorion loci in Drosophila follicle cells leads to extensive gene amplification, and the organization of the cis-acting DNA elements that regulate this process may provide a model for how such regulation is achieved. Two elements important for amplification of the third chromosome chorion gene cluster, ACE3 and Ori-β, are directly bound by Orc (origin recognition complex), and two-dimensional gel analysis has revealed that the primary origin used is Ori-β (refs 7–9). Here we show that the Drosophila homologue of the Myb (Myeloblastosis) oncoprotein family is tightly associated with four additional proteins, and that the complex binds site-specifically to these regulatory DNA elements. Drosophila Myb is required in trans for gene amplification, showing that a Myb protein is directly involved in DNA replication. A Drosophila Myb binding site, as well as the binding site for another Myb complex member (p120), is necessary in cis for replication of reporter transgenes. Chromatin immunoprecipitation experiments localize both proteins to the chorion loci in vivo. These data provide evidence that specific protein complexes bound to replication enhancer elements work together with the general replication machinery for site-specific origin utilization during replication.


PLOS Genetics | 2009

Functional Enhancers at the Gene-Poor 8q24 Cancer-Linked Locus

Li Jia; Gilad Landan; Mark Pomerantz; Rami Jaschek; Paula Herman; David Reich; Chunli Yan; Omar Khalid; Phil Kantoff; William Oh; J. Robert Manak; Benjamin P. Berman; Brian E. Henderson; Baruch Frenkel; Christopher A. Haiman; Matthew L. Freedman; Amos Tanay; Gerhard A. Coetzee

Multiple discrete regions at 8q24 were recently shown to contain alleles that predispose to many cancers including prostate, breast, and colon. These regions are far from any annotated gene and their biological activities have been unknown. Here we profiled a 5-megabase chromatin segment encompassing all the risk regions for RNA expression, histone modifications, and locations occupied by RNA polymerase II and androgen receptor (AR). This led to the identification of several transcriptional enhancers, which were verified using reporter assays. Two enhancers in one risk region were occupied by AR and responded to androgen treatment; one contained a single nucleotide polymorphism (rs11986220) that resides within a FoxA1 binding site, with the prostate cancer risk allele facilitating both stronger FoxA1 binding and stronger androgen responsiveness. The study reported here exemplifies an approach that may be applied to any risk-associated allele in non-protein coding regions as it emerges from genome-wide association studies to better understand the genetic predisposition of complex diseases.


Nature Genetics | 2006

Biological function of unannotated transcription during the early development of Drosophila melanogaster

J. Robert Manak; Sujit Dike; Victor Sementchenko; Philipp Kapranov; Frédéric Biemar; Jeffrey Long; Jill Cheng; Ian Bell; Srinka Ghosh; Antonio Piccolboni; Thomas R. Gingeras

Many animal and plant genomes are transcribed much more extensively than current annotations predict. However, the biological function of these unannotated transcribed regions is largely unknown. Approximately 7% and 23% of the detected transcribed nucleotides during D. melanogaster embryogenesis map to unannotated intergenic and intronic regions, respectively. Based on computational analysis of coordinated transcription, we conservatively estimate that 29% of all unannotated transcribed sequences function as missed or alternative exons of well-characterized protein-coding genes. We estimate that 15.6% of intergenic transcribed regions function as missed or alternative transcription start sites (TSS) used by 11.4% of the expressed protein-coding genes. Identification of P element mutations within or near newly identified 5′ exons provides a strategy for mapping previously uncharacterized mutations to their respective genes. Collectively, these data indicate that at least 85% of the fly genome is transcribed and processed into mature transcripts representing at least 30% of the fly genome.


Science | 2010

Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate

Simon Henriet; Sutada Mungpakdee; Jean-Marc Aury; Corinne Da Silva; Henner Brinkmann; Jana Mikhaleva; Lisbeth Charlotte Olsen; Claire Jubin; Cristian Cañestro; Jean-Marie Bouquet; Gemma Danks; Julie Poulain; Coen Campsteijn; Marcin Adamski; Ismael Cross; Fekadu Yadetie; Matthieu Muffato; Alexandra Louis; Stephen Butcher; Georgia Tsagkogeorga; Anke Konrad; Sarabdeep Singh; Marit Flo Jensen; Evelyne Huynh Cong; Helen Eikeseth-Otteraa; Benjamin Noel; Véronique Anthouard; Betina M. Porcel; Rym Kachouri-Lafond; Atsuo Nishino

Ocean Dweller Sequenced The Tunicates, which include the solitary free-swimming larvaceans that are a major pelagic component of our oceans, are a basal lineage of the chordates. In order to investigate the major evolutionary transition represented by these organisms, Denoeud et al. (p. 1381, published online 18 November) sequenced the genome of Oikopleura dioica, a chordate placed by phylogeny between vertebrates and amphioxus. Surprisingly, the genome showed little conservation in genome architecture when compared to the genomes of other animals. Furthermore, this highly compacted genome contained intron gains and losses, as well as species-specific gene duplications and losses that may be associated with development. Thus, contrary to popular belief, global similarities of genome architecture from sponges to humans are not essential for the preservation of ancestral morphologies. A metazoan genome departs from the organization that appears rigidly established in other animal phyla. Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.


Nucleic Acids Research | 2010

BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum

Hee Shin Kim; Terence Murphy; Jing Xia; Doina Caragea; Yoonseong Park; Richard W. Beeman; Marcé D. Lorenzen; Stephen Butcher; J. Robert Manak; Susan J. Brown

BeetleBase (http://www.beetlebase.org) has been updated to provide more comprehensive genomic information for the red flour beetle Tribolium castaneum. The database contains genomic sequence scaffolds mapped to 10 linkage groups (genome assembly release Tcas_3.0), genetic linkage maps, the official gene set, Reference Sequences from NCBI (RefSeq), predicted gene models, ESTs and whole-genome tiling array data representing several developmental stages. The database was reconstructed using the upgraded Generic Model Organism Database (GMOD) modules. The genomic data is stored in a PostgreSQL relatational database using the Chado schema and visualized as tracks in GBrowse. The updated genetic map is visualized using the comparative genetic map viewer CMAP. To enhance the database search capabilities, the BLAST and BLAT search tools have been integrated with the GMOD tools. BeetleBase serves as a long-term repository for Tribolium genomic data, and is compatible with other model organism databases.


PLOS Genetics | 2008

Stability and Dynamics of Polycomb Target Sites in Drosophila Development

Camilla Kwong; Boris Adryan; Ian Bell; Lisa A. Meadows; Steven Russell; J. Robert Manak; Robert A. H. White

Polycomb-group (PcG) and Trithorax-group proteins together form a maintenance machinery that is responsible for stable heritable states of gene activity. While the best-studied target genes are the Hox genes of the Antennapedia and Bithorax complexes, a large number of key developmental genes are also Polycomb (Pc) targets, indicating a widespread role for this maintenance machinery in cell fate determination. We have studied the linkage between the binding of PcG proteins and the developmental regulation of gene expression using whole-genome mapping to identify sites bound by the PcG proteins, Pc and Pleiohomeotic (Pho), in the Drosophila embryo and in a more restricted tissue, the imaginal discs of the third thoracic segment. Our data provide support for the idea that Pho is a general component of the maintenance machinery, since the majority of Pc targets are also associated with Pho binding. We find, in general, considerable developmental stability of Pc and Pho binding at target genes and observe that Pc/Pho binding can be associated with both expressed and inactive genes. In particular, at the Hox complexes, both active and inactive genes have significant Pc and Pho binding. However, in comparison to inactive genes, the active Hox genes show reduced and altered binding profiles. During development, Pc target genes are not simply constantly associated with Pc/Pho binding, and we identify sets of genes with clear differential binding between embryo and imaginal disc. Using existing datasets, we show that for specific fate-determining genes of the haemocyte lineage, the active state is characterised by lack of Pc binding. Overall, our analysis suggests a dynamic relationship between Pc/Pho binding and gene transcription. Pc/Pho binding does not preclude transcription, but levels of Pc/Pho binding change during development, and loss of Pc/Pho binding can be associated with both stable gene activity and inactivity.


American Journal of Human Genetics | 2011

Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

Hirotaka Tao; J. Robert Manak; Levi P. Sowers; Xue Mei; Hiroshi Kiyonari; Takaya Abe; Nader S. Dahdaleh; Tian Yang; Shu Wu; Shan Chen; Mark H Fox; Christina A. Gurnett; Thomas J. Montine; Bird Td; Lisa G. Shaffer; Jill A. Rosenfeld; Juliann S. McConnell; Suneeta Madan-Khetarpal; Elizabeth Berry-Kravis; Hilary Griesbach; Russell P. Saneto; Matthew P. Scott; Dragana Antic; Jordan Reed; Riley Boland; Salleh N. Ehaideb; Hatem El-Shanti; Vinit B. Mahajan; Polly J. Ferguson; Jeffrey D. Axelrod

Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.

Collaboration


Dive into the J. Robert Manak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Polly J. Ferguson

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge