Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen Butcher is active.

Publication


Featured researches published by Stephen Butcher.


PLOS Genetics | 2011

Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo

Chung Yi Nien; Hsiao Lan Liang; Stephen Butcher; Yujia Sun; Shengbo Fu; Tenzin Gocha; Nikolai Kirov; J. Robert Manak; Christine Rushlow

In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic “hotspot” regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo.


Science | 2010

Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate

Simon Henriet; Sutada Mungpakdee; Jean-Marc Aury; Corinne Da Silva; Henner Brinkmann; Jana Mikhaleva; Lisbeth Charlotte Olsen; Claire Jubin; Cristian Cañestro; Jean-Marie Bouquet; Gemma Danks; Julie Poulain; Coen Campsteijn; Marcin Adamski; Ismael Cross; Fekadu Yadetie; Matthieu Muffato; Alexandra Louis; Stephen Butcher; Georgia Tsagkogeorga; Anke Konrad; Sarabdeep Singh; Marit Flo Jensen; Evelyne Huynh Cong; Helen Eikeseth-Otteraa; Benjamin Noel; Véronique Anthouard; Betina M. Porcel; Rym Kachouri-Lafond; Atsuo Nishino

Ocean Dweller Sequenced The Tunicates, which include the solitary free-swimming larvaceans that are a major pelagic component of our oceans, are a basal lineage of the chordates. In order to investigate the major evolutionary transition represented by these organisms, Denoeud et al. (p. 1381, published online 18 November) sequenced the genome of Oikopleura dioica, a chordate placed by phylogeny between vertebrates and amphioxus. Surprisingly, the genome showed little conservation in genome architecture when compared to the genomes of other animals. Furthermore, this highly compacted genome contained intron gains and losses, as well as species-specific gene duplications and losses that may be associated with development. Thus, contrary to popular belief, global similarities of genome architecture from sponges to humans are not essential for the preservation of ancestral morphologies. A metazoan genome departs from the organization that appears rigidly established in other animal phyla. Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.


Nucleic Acids Research | 2010

BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum

Hee Shin Kim; Terence Murphy; Jing Xia; Doina Caragea; Yoonseong Park; Richard W. Beeman; Marcé D. Lorenzen; Stephen Butcher; J. Robert Manak; Susan J. Brown

BeetleBase (http://www.beetlebase.org) has been updated to provide more comprehensive genomic information for the red flour beetle Tribolium castaneum. The database contains genomic sequence scaffolds mapped to 10 linkage groups (genome assembly release Tcas_3.0), genetic linkage maps, the official gene set, Reference Sequences from NCBI (RefSeq), predicted gene models, ESTs and whole-genome tiling array data representing several developmental stages. The database was reconstructed using the upgraded Generic Model Organism Database (GMOD) modules. The genomic data is stored in a PostgreSQL relatational database using the Chado schema and visualized as tracks in GBrowse. The updated genetic map is visualized using the comparative genetic map viewer CMAP. To enhance the database search capabilities, the BLAST and BLAT search tools have been integrated with the GMOD tools. BeetleBase serves as a long-term repository for Tribolium genomic data, and is compatible with other model organism databases.


Journal of Investigative Dermatology | 2013

Interferon Regulatory Factor 6 promotes differentiation of the periderm by activating expression of Grainyhead-like 3

Gabriel de la Garza; Jack Robert Schleiffarth; Martine Dunnwald; Anuj Mankad; Jason L. Weirather; Gregory Bonde; Stephen Butcher; Tamer Mansour; Youssef A. Kousa; Cindy Fukazawa; Douglas W. Houston; J. Robert Manak; Brian C. Schutte; Daniel S. Wagner; Robert A. Cornell

Interferon Regulatory Factor 6 (IRF6) is a transcription factor that, in mammals, is required for the differentiation of skin, breast epithelium, and oral epithelium. However, the transcriptional targets that mediate these effects are currently unknown. In zebrafish and frog embryos Irf6 is necessary for differentiation of the embryonic superficial epithelium, or periderm. Here we use microarrays to identify genes that are expressed in the zebrafish periderm and whose expression is inhibited by a dominant-negative variant of Irf6 (dnIrf6). These methods identify Grhl3, an ancient regulator of the epidermal permeability barrier, as acting downstream of Irf6. In human keratinocytes, IRF6 binds conserved elements near the GHRL3 promoter. We show that one of these elements has enhancer activity in human keratinocytes and zebrafish periderm, suggesting that Irf6 directly stimulates Grhl3 expression in these tissues. Simultaneous inhibition of grhl1 and grhl3 disrupts periderm differentiation in zebrafish, and, intriguingly, forced grhl3 expression restores periderm markers in both zebrafish injected with dnIrf6 and frog embryos depleted of Irf6. Finally, in Irf6 deficient mouse embryos, Grhl3 expression in the periderm and oral epithelium is virtually absent. These results indicate that Grhl3 is a key effector of Irf6 in periderm differentiation.


Insect Biochemistry and Molecular Biology | 2012

Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum

Hans Merzendorfer; Hee Shin Kim; Sujata S. Chaudhari; Meera Kumari; Charles A. Specht; Stephen Butcher; Susan J. Brown; J. Robert Manak; Richard W. Beeman; Karl J. Kramer; Subbaratnam Muthukrishnan

Several benzoylphenyl urea-derived insecticides such as diflubenzuron (DFB, Dimilin) are in wide use to control various insect pests. Although this class of compounds is known to disrupt molting and to affect chitin content, their precise mode of action is still not understood. To gain a broader insight into the mechanism underlying the insecticidal effects of benzoylphenyl urea compounds, we conducted a comprehensive study with the model beetle species and stored product pest Tribolium castaneum (red flour beetle) utilizing genomic and proteomic approaches. DFB was added to a wheat flour-based diet at various concentrations and fed to larvae and adults. We observed abortive molting, hatching defects and reduced chitin amounts in the larval cuticle, the peritrophic matrix and eggs. Electron microscopic examination of the larval cuticle revealed major structural changes and a loss of lamellate structure of the procuticle. We used a genomic tiling array for determining relative expression levels of about 11,000 genes predicted by the GLEAN algorithm. About 6% of all predicted genes were more than 2-fold up- or down-regulated in response to DFB treatment. Genes encoding enzymes involved in chitin metabolism were unexpectedly unaffected, but many genes encoding cuticle proteins were affected. In addition, several genes presumably involved in detoxification pathways were up-regulated. Comparative 2D gel electrophoresis of proteins extracted from the midgut revealed 388 protein spots, of which 7% were significantly affected in their levels by DFB treatment as determined by laser densitometry. Mass spectrometric identification revealed that UDP-N-acetylglucosamine pyrophosphorylase and glutathione synthetase were up-regulated. In summary, the red flour beetle turned out to be a good model organism for investigating the global effects of bioactive materials such as insect growth regulators and other insecticides. The results of this study recapitulate all of the different DFB-induced symptoms in a single model insect, which have been previously found in several different insect species, and further illustrate that DFB treatment causes a wide range of effects at the molecular level.


Nucleic Acids Research | 2013

OikoBase: a genomics and developmental transcriptomics resource for the urochordate Oikopleura dioica

Gemma Danks; Coen Campsteijn; Mruyunjaya Parida; Stephen Butcher; Harsha Doddapaneni; Bolei Fu; Raul Petrin; Raghu Metpally; Boris Lenhard; Patrick Wincker; Daniel Chourrout; Eric M. Thompson; J. Robert Manak

We report the development of OikoBase (http://oikoarrays.biology.uiowa.edu/Oiko/), a tiling array-based genome browser resource for Oikopleura dioica, a metazoan belonging to the urochordates, the closest extant group to vertebrates. OikoBase facilitates retrieval and mining of a variety of useful genomics information. First, it includes a genome browser which interrogates 1260 genomic sequence scaffolds and features gene, transcript and CDS annotation tracks. Second, we annotated gene models with gene ontology (GO) terms and InterPro domains which are directly accessible in the browser with links to their entries in the GO (http://www.geneontology.org/) and InterPro (http://www.ebi.ac.uk/interpro/) databases, and we provide transcript and peptide links for sequence downloads. Third, we introduce the transcriptomics of a comprehensive set of developmental stages of O. dioica at high resolution and provide downloadable gene expression data for all developmental stages. Fourth, we incorporate a BLAST tool to identify homologs of genes and proteins. Finally, we include a tutorial that describes how to use OikoBase as well as a link to detailed methods, explaining the data generation and analysis pipeline. OikoBase will provide a valuable resource for research in chordate development, genome evolution and plasticity and the molecular ecology of this important marine planktonic organism.


BMC Genomics | 2012

Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics.

Fekadu Yadetie; Stephen Butcher; Hilde Elise Førde; Coen Campsteijn; Jean-Marie Bouquet; Odd André Karlsen; Raghu Metpally; Eric M. Thompson; J. Robert Manak; Anders Goksøyr; Daniel Chourrout

BackgroundAnimals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in Oikopleura dioica genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo).ResultsOikopleura genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP) genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways.ConclusionsOikopleura has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.


PLOS ONE | 2012

Expression of Human Paraoxonase 1 Decreases Superoxide Levels and Alters Bacterial Colonization in the Gut of Drosophila melanogaster

Alejandro A. Pezzulo; Emma E. Hornick; Michael V. Rector; Miriam Estin; Anna Reisetter; Peter J. Taft; Stephen Butcher; A. Brent Carter; J. Robert Manak; David A. Stoltz; Joseph Zabner

Paraoxonases (PON) are a family of proteins (PON1, 2 and 3) with multiple enzymatic activities. PON1 interferes with homoserine lactone-mediated quorum sensing in bacteria and with reactive oxygen species (ROS) in humans and mice. PON1 gene mutations have been linked to multiple traits, including aging, and diseases of the cardiovascular, nervous and gastrointestinal system. The overlapping enzymatic activities in the PON family members and high linkage disequilibrium rates within their polymorphisms confound animal and human studies of PON1 function. In contrast, arthropods such as Drosophila melanogaster have no PON homologs, resulting in an ideal model to study interactions between PON genotype and host phenotypes. We hypothesized that expression of PON1 in D. melanogaster would alter ROS. We found that PON1 alters expression of multiple oxidative stress genes and decreases superoxide anion levels in normal and germ-free D. melanogaster. We also found differences in the composition of the gut microbiota, with a remarkable increase in levels of Lactobacillus plantarum and associated changes in expression of antimicrobial and cuticle-related genes. PON1 expression directly decreased superoxide anion levels and altered bacterial colonization of the gut and its gene expression profile, highlighting the complex nature of the interaction between host genotype and gut microbiota. We speculate that the interaction between some genotypes and human diseases may be mediated by the presence of certain gut bacteria that can induce specific immune responses in the gut and other host tissues.


Cell Reports | 2014

ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling.

Karen Handschuh; Jennifer Feenstra; Matthew Koss; Elisabetta Ferretti; Maurizio Risolino; Rediet Zewdu; Michelle A. Sahai; Jean-Denis Bénazet; Xiao P. Peng; Michael J. Depew; Laura Quintana; James Sharpe; Baolin Wang; Heather L. Alcorn; Roberta Rivi; Stephen Butcher; J. Robert Manak; Thomas Vaccari; Harel Weinstein; Kathryn V. Anderson; Elizabeth Lacy; Licia Selleri


Epigenetics & Chromatin | 2017

Sex-specific chromatin landscapes in an ultra-compact chordate genome

Pavla Navratilova; Gemma Danks; Abby Long; Stephen Butcher; John Manak; Eric M. Thompson

Collaboration


Dive into the Stephen Butcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard W. Beeman

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge