Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. S. Dileep Kumar is active.

Publication


Featured researches published by J. S. Dileep Kumar.


The Journal of Nuclear Medicine | 2010

In Vivo Quantification of Human Serotonin 1A Receptor Using 11C-CUMI-101, an Agonist PET Radiotracer

Matthew S. Milak; Christine DeLorenzo; Francesca Zanderigo; Jaya Prabhakaran; J. S. Dileep Kumar; Vattoly J. Majo; J. John Mann; Ramin V. Parsey

The serotonin (5-hydroxytryptamine, or 5-HT) type 1A receptor (5-HT1AR) is implicated in the pathophysiology of numerous neuropsychiatric disorders. We have published the initial evaluation and reproducibility in vivo of [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione (11C-CUMI-101), a novel 5-HT1A agonist radiotracer, in Papio anubis. Here, we report the optimal modeling parameters of 11C-CUMI-101 for human PET studies. Methods: PET scans were obtained for 7 adult human volunteers. 11C-CUMI-101 was injected as an intravenous bolus, and emission data were collected for 120 min in 3-dimensional mode. We evaluated 10 different models using metabolite-corrected arterial input functions or reference region approaches and several outcome measures. Results: When using binding potential (BPF = Bavail/KD [total available receptor concentration divided by the equilibrium dissociation constant]) as the outcome measure, the likelihood estimation in the graphical analysis (LEGA) model performed slightly better than the other methods evaluated at full scan duration. The average test–retest percentage difference was 9.90% ± 5.60%. When using BPND (BPND = fnd × Bavail/KD; BPND equals the product of BPF and fnd [free fraction in the nondisplaceable compartment]), the simplified reference tissue method (SRTM) achieved the lowest percentage difference and smallest bias when compared with nondisplaceable binding potential obtained from LEGA using the metabolite-corrected plasma input function (r2 = 0.99; slope = 0.92). The time–stability analysis indicates that a 120-min scan is sufficient for the stable estimation of outcome measures. Voxel results were comparable to region-of-interest–based analysis, with higher spatial resolution. Conclusion: On the basis of its measurable and stable free fraction, high affinity and selectivity, good blood–brain barrier permeability, and plasma and brain kinetics, 11C-CUMI-101 is suitable for the imaging of high-affinity 5-HT1A binding in humans.


Tetrahedron Letters | 2001

Simple and chemoselective reduction of aromatic nitro compounds to aromatic amines: Reduction with hydriodic acid revisited

J. S. Dileep Kumar; ManKit M. Ho; Tatsushi Toyokuni

Abstract Reduction of aromatic nitro compounds to amines with hydriodic acid was reinvestigated. Under a milder non-refluxing condition (at 90°C for 2–4 h), the reduction proceeded efficiently with excellent chemoselectivity without affecting other functional groups including nitrile, ester, halide, carbonyl, amide, sulfonamide, imidazole and methylthio groups.


The Journal of Nuclear Medicine | 2008

Modeling Considerations for 11C-CUMI-101, an Agonist Radiotracer for Imaging Serotonin 1A Receptor In Vivo with PET

Matthew S. Milak; Alin J. Severance; R. Todd Ogden; Jaya Prabhakaran; J. S. Dileep Kumar; Vattoly J. Majo; J. John Mann; Ramin V. Parsey

Several lines of evidence demonstrate involvement of serotonin 1A receptors (5-HT1ARs) in the pathophysiology of neuropsychiatric disorders such as depression, suicidal behavior, schizophrenia, and Alzheimers disease. We recently published the synthesis and initial evaluation of [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione (11C-MMP), a 5-HT1AR agonist. Here we determine the optimal modeling parameters for 11C-MMP under its new name, 11C-CUMI-101, in Papio anubis. Methods: PET scans were performed on 2 adult male P. anubis; 166.5 MBq ± 43.0 (4.50 ± 1.16 mCi) of 11C-CUMI-101 were injected as an intravenous bolus, and emission data were collected for 120 min in 3-dimensional mode. We evaluated 4 different models (1- and 2-tissue compartment iterative and noniterative kinetic models, basis pursuit, and likelihood estimation in graphical analysis [LEGA]), using binding potential (BPF = Bmax/Kd) (Bmax = maximum number of binding sites; Kd = dissociation constant) as the outcome measure. Arterial blood sampling and metabolite-corrected arterial input function were used for full quantification of BPF. To assess the performance of each model, we compared results using 6 different metrics (percentage difference, within-subject mean sum of squares [WSMSS] for reproducibility; variance across subjects, intraclass correlation coefficient [ICC] for reliability; identifiability based on bootstrap resampling of residuals; and time stability analysis to determine minimal required scanning time) at each of 6 different scanning durations. Models were also evaluated on scans acquired after injecting the 5-HT1A antagonist [N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexane carboxamide] [WAY100635] 0.5 mg/kg, intravenous) and the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin) [8-OH-DPAT] 2 mg/kg, intravenous). Results: All metabolites are more polar than 11C-CUMI-101, and no significant change in metabolites was observed in the blocking studies. The free fraction is 59% ± 3%. We determined that 100 min of scanning time is adequate and that for the region-of-interest (ROI)–level analysis, the LEGA model gives the best results. The median test–retest percentage difference for BPF is 11.15% ± 4.82% across all regions, WSMSS = 2.66, variance = 6.07, ICC = 0.43, and bootstrap identifiability = 0.59. Preadministration of WAY100635 and 8-OH-DPAT resulted in 87% and 76% average reductions in BPF values, respectively, across ROIs. Conclusion: On the basis of the measurable free fraction, high affinity and selectivity, adequate blood–brain permeability, and favorable plasma and brain kinetics, 11C-CUMI-101 is an excellent candidate for imaging high-affinity 5-HT1ARs in humans.


Journal of Cerebral Blood Flow and Metabolism | 2009

Modeling considerations for in vivo quantification of the dopamine transporter using [11C]PE2I and positron emission tomography

Christine DeLorenzo; J. S. Dileep Kumar; Francesca Zanderigo; J. John Mann; Ramin V. Parsey

The dopamine transporter (DAT) is an important imaging target as changes in DAT have been implicated in a variety of neurologic and psychiatric disorders and can result from certain classes of medications. [11C]N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ([11C]PE2I), a radioligand with high specificity for DAT, has been shown to exhibit favorable kinetics and to produce high contrast positron emission tomography (PET) images. To better characterize this ligand and to assess its measurement reliability, PET images of seven subjects were acquired in a test–retest paradigm. For optimal model performance, each subject was scanned for 120 mins, ensuring that high binding regions could reach equilibrium, a validated coregistration method was performed for accurate anatomic delineations and an exhaustive search for a reference region having one-tissue compartment kinetics was undertaken. Eleven modeling methods were tested and six metrics were used for method evaluation. A noniterative two-tissue compartment method with 100 mins of scanning time was found to be optimal for characterizing [11C]PE2I.


Bioorganic & Medicinal Chemistry Letters | 2015

Synthesis and in vitro evaluation of [18F]FECIMBI-36: A potential agonist PET ligand for 5-HT2A/2C receptors.

Jaya Prabhakaran; Mark D. Underwood; J. S. Dileep Kumar; Norman Simpson; Suham Kassir; Mihran J. Bakalian; J. John Mann; Victoria Arango

Radiosynthesis and in vitro evaluation of [(18)F]-2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-(2-fluoroethoxy)benzyl)ethanamine, ([(18)F]FECIMBI-36) or ([(18)F]1), a potential agonist PET imaging agent for 5-HT2A/2C receptors is described. Syntheses of reference standard 1 and the corresponding des-fluoroethyl radiolabeling precursor (2) were achieved with 75% and 65% yields, respectively. In vitro pharmacology assay of FECIMBI-36 by [(3)H]-ketanserin competition binding assay obtained from NIMH-PDSP showed high affinities to 5-HT2AR (Ki = 1nM) and 5-HT2CR (Ki=1.7 nM). Radiolabeling of FECIMBI-36 was achieved from the boc-protected precursor 2 using [(18)F]-fluoroethyltosylate in presence of Cs2CO3 in DMSO followed by removal of the protective group. [(18)F]1 was isolated using RP-HPLC in 25 ± 5% yield, purity > 95% and specific activity 1-2Ci/μmol (N = 6). In vitro autoradiography studies demonstrate that [(18)F]1 selectively label 5-HT2A and 5-HT2C receptors in slide-mounted sections of postmortem human brain using phosphor imaging. Our results indicate the potential of [(18)F]1 for imaging 5-HT2A/2C receptors in the high affinity state in vivo using PET imaging.


Bioorganic & Medicinal Chemistry Letters | 2017

In vivo evaluation of [18F]FECIMBI-36, an agonist 5-HT2A/2C receptor PET radioligand in nonhuman primate

Jaya Prabhakaran; Kiran Kumar Solingapuram Sai; Francesca Zanderigo; Harry Rubin-Falcone; Matthew J. Jorgensen; Jay R. Kaplan; Katharine I. Tooke; Akiva Mintz; J. John Mann; J. S. Dileep Kumar

We recently reported the radiosynthesis and in vitro evaluation of [18F]-2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-(2-fluoroethoxy)benzyl)ethanamine, ([18F]FECIMBI-36) or ([18F]1), an agonist radioligand for 5HT2A/2C receptors in postmortem samples of human brain. Herein we describe the in vivo evaluation of [18F]FECIMBI-36 in vervet/African green monkeys by PET imaging. PET images show that [18F]FECIMBI-36 penetrates the blood-brain barrier and a low retention of radioactivity is observed in monkey brain. Although the time activity curves indicate a somehow heterogeneous distribution of the radioligand in the brain, the low level of [18F]FECIMBI-36 in brain may limit the use of this tracer for quantification of 5-HT2A/2C receptors by PET.


Bioorganic & Medicinal Chemistry Letters | 2017

In vivo evaluation of IGF1R/IR PET ligand [18F]BMS-754807 in rodents

Jaya Prabhakaran; Stephen L. Dewey; Richard McClure; Norman Simpson; M. N. Tantawy; J. John Mann; Wellington Pham; J. S. Dileep Kumar

In vivo evaluation of [18F]BMS-754807 binding in mice and rats using microPET and biodistribution methods is described herein. The radioligand shows consistent binding characteristics, in vivo, in both species. Early time frames of the microPET images and time activity curves of brain indicate poor penetration of the tracer across the blood brain barrier (BBB) in both species. However, microPET experiments in mice and rats show high binding of the radioligand outside the brain to heart, pancreas and muscle, the organs known for higher expression of IGF1R/1R. Biodistribution analysis 2h after injection of [18F]BMS-754807 in rats show negligible [18F]defluorination as reflected by the low bone uptake and clearance from blood. Overall, the data indicate that [18F]BMS-754807 can potentially be a radiotracer for the quantification of IGF1R/IR outside the brain using PET.


Bioorganic & Medicinal Chemistry Letters | 2017

Radiosynthesis and evaluation of IGF1R PET ligand [11C]GSK1838705A

Kiran Kumar Solingapuram Sai; Jaya Prabhakaran; Anirudh Sattiraju; J. John Mann; Akiva Mintz; J. S. Dileep Kumar

Radiosynthesis and evaluation of [11C]GSK1838705A in mice using microPET and determination of specificity in human GBM UG87MR cells are described herein. The radioligand was synthesized by reacting desmethyl-GSK1838705A with [11C]CH3I using GE FX2MeI module in ∼5% yield (EOS), >95% radiochemical purity and a specific activity of 2.5±0.5Ci/μmol. MicroPET imaging in mice indicated that [11C]GSK1838705A penetrated blood brain barrier (BBB) and showed retention of radiotracer in brain. The radioligand exhibited high uptake in U87MG cells with >70% specific binding to IGF1R. Our experiments suggest that [11C]GSK-1838705A can be a potential PET radiotracer for the in vivo quantification of IGF1R expression in GBM and other brain tumors.


ACS Chemical Neuroscience | 2017

Radiosynthesis and In Vivo Evaluation of [11C]A1070722, a High Affinity GSK-3 PET Tracer in Primate Brain

Jaya Prabhakaran; Francesca Zanderigo; Kiran Kumar Solingapuram Sai; Harry Rubin-Falcone; Matthew J. Jorgensen; Jay R. Kaplan; Akiva Mintz; J. John Mann; J. S. Dileep Kumar

Dysfunction of glycogen synthase kinase 3 (GSK-3) is implicated in the etiology of Alzheimers disease, Parkinsons disease, diabetes, pain, and cancer. A radiotracer for functional positron emission tomography (PET) imaging could be used to study the kinase in brain disorders and to facilitate the development of small molecule inhibitors of GSK-3 for treatment. At present, there is no target-specific or validated PET tracer available for the in vivo monitoring of GSK-3. We radiolabeled the small molecule inhibitor [11C]1-(7-methoxy- quinolin-4-yl)-3-(6-(trifluoromethyl)pyridin-2-yl)urea ([11C]A1070722) with high affinity to GSK-3 (Ki = 0.6 nM) in excellent radiochemical yield. PET imaging experiments in anesthetized vervet/African green monkey exhibited that [11C]A1070722 penetrated the blood-brain barrier (BBB) and accumulated in brain regions, with highest radioactivity binding in frontal cortex followed by parietal cortex and anterior cingulate, and with the lowest bindings found in caudate, putamen, and thalamus, similarly to the known distribution of GSK-3 in human brain. Our studies suggest that [11C]A1070722 can be a potential PET radiotracer for the in vivo quantification of GSK-3 in brain.


ACS Medicinal Chemistry Letters | 2016

Autoradiographic Evaluation of [18F]FECUMI-101, a High Affinity 5-HT1AR Ligand in Human Brain

J. S. Dileep Kumar; Mark D. Underwood; Norman Simpson; Suham Kassir; Jaya Prabhakaran; Vattoly J. Majo; Mihran J. Bakalian; Ramin V. Parsey; J. John Mann; Victoria Arango

[(18)F]FECUMI-101 ([(18)F]1) is a 5HT1AR ligand demonstrating specific binding in brain regions corresponding to the distribution of 5-HT1AR in baboons. However, we detected moderate uptake of [(18)F]1 in baboon thalamus, a brain region lacking 5-HT1AR. We sought to investigate the relative binding of [(18)F]1 to 5-HT1AR, α1R, and 5-HT7R in vitro. Using autoradiography in human brain sections, specific binding of [(18)F]1 to 5-HT1AR was confirmed. However, [(18)F]1 also showed 26% binding to α1R in PFC. The hippocampal formation exhibited 51% and 92% binding of [(18)F]1 to α1R and 5-HT1AR, respectively. Thalamus and cerebellum showed very little binding. There is no measurable specific binding of [(18)F]1 to 5-HT7R and no effect of temperature on [(18)F]1 specific binding to 5-HT1AR or α1R. These results indicate that, while [(18)F]FECUMI-101 is not a completely selective 5-HT1AR ligand for receptor quantification, it may be useful for occupancy measurements of drugs acting at 5-HT1AR in vivo.

Collaboration


Dive into the J. S. Dileep Kumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norman Simpson

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiva Mintz

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge