Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vattoly J. Majo is active.

Publication


Featured researches published by Vattoly J. Majo.


The Journal of Nuclear Medicine | 2010

In Vivo Quantification of Human Serotonin 1A Receptor Using 11C-CUMI-101, an Agonist PET Radiotracer

Matthew S. Milak; Christine DeLorenzo; Francesca Zanderigo; Jaya Prabhakaran; J. S. Dileep Kumar; Vattoly J. Majo; J. John Mann; Ramin V. Parsey

The serotonin (5-hydroxytryptamine, or 5-HT) type 1A receptor (5-HT1AR) is implicated in the pathophysiology of numerous neuropsychiatric disorders. We have published the initial evaluation and reproducibility in vivo of [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione (11C-CUMI-101), a novel 5-HT1A agonist radiotracer, in Papio anubis. Here, we report the optimal modeling parameters of 11C-CUMI-101 for human PET studies. Methods: PET scans were obtained for 7 adult human volunteers. 11C-CUMI-101 was injected as an intravenous bolus, and emission data were collected for 120 min in 3-dimensional mode. We evaluated 10 different models using metabolite-corrected arterial input functions or reference region approaches and several outcome measures. Results: When using binding potential (BPF = Bavail/KD [total available receptor concentration divided by the equilibrium dissociation constant]) as the outcome measure, the likelihood estimation in the graphical analysis (LEGA) model performed slightly better than the other methods evaluated at full scan duration. The average test–retest percentage difference was 9.90% ± 5.60%. When using BPND (BPND = fnd × Bavail/KD; BPND equals the product of BPF and fnd [free fraction in the nondisplaceable compartment]), the simplified reference tissue method (SRTM) achieved the lowest percentage difference and smallest bias when compared with nondisplaceable binding potential obtained from LEGA using the metabolite-corrected plasma input function (r2 = 0.99; slope = 0.92). The time–stability analysis indicates that a 120-min scan is sufficient for the stable estimation of outcome measures. Voxel results were comparable to region-of-interest–based analysis, with higher spatial resolution. Conclusion: On the basis of its measurable and stable free fraction, high affinity and selectivity, good blood–brain barrier permeability, and plasma and brain kinetics, 11C-CUMI-101 is suitable for the imaging of high-affinity 5-HT1A binding in humans.


The Journal of Nuclear Medicine | 2008

Modeling Considerations for 11C-CUMI-101, an Agonist Radiotracer for Imaging Serotonin 1A Receptor In Vivo with PET

Matthew S. Milak; Alin J. Severance; R. Todd Ogden; Jaya Prabhakaran; J. S. Dileep Kumar; Vattoly J. Majo; J. John Mann; Ramin V. Parsey

Several lines of evidence demonstrate involvement of serotonin 1A receptors (5-HT1ARs) in the pathophysiology of neuropsychiatric disorders such as depression, suicidal behavior, schizophrenia, and Alzheimers disease. We recently published the synthesis and initial evaluation of [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione (11C-MMP), a 5-HT1AR agonist. Here we determine the optimal modeling parameters for 11C-MMP under its new name, 11C-CUMI-101, in Papio anubis. Methods: PET scans were performed on 2 adult male P. anubis; 166.5 MBq ± 43.0 (4.50 ± 1.16 mCi) of 11C-CUMI-101 were injected as an intravenous bolus, and emission data were collected for 120 min in 3-dimensional mode. We evaluated 4 different models (1- and 2-tissue compartment iterative and noniterative kinetic models, basis pursuit, and likelihood estimation in graphical analysis [LEGA]), using binding potential (BPF = Bmax/Kd) (Bmax = maximum number of binding sites; Kd = dissociation constant) as the outcome measure. Arterial blood sampling and metabolite-corrected arterial input function were used for full quantification of BPF. To assess the performance of each model, we compared results using 6 different metrics (percentage difference, within-subject mean sum of squares [WSMSS] for reproducibility; variance across subjects, intraclass correlation coefficient [ICC] for reliability; identifiability based on bootstrap resampling of residuals; and time stability analysis to determine minimal required scanning time) at each of 6 different scanning durations. Models were also evaluated on scans acquired after injecting the 5-HT1A antagonist [N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexane carboxamide] [WAY100635] 0.5 mg/kg, intravenous) and the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin) [8-OH-DPAT] 2 mg/kg, intravenous). Results: All metabolites are more polar than 11C-CUMI-101, and no significant change in metabolites was observed in the blocking studies. The free fraction is 59% ± 3%. We determined that 100 min of scanning time is adequate and that for the region-of-interest (ROI)–level analysis, the LEGA model gives the best results. The median test–retest percentage difference for BPF is 11.15% ± 4.82% across all regions, WSMSS = 2.66, variance = 6.07, ICC = 0.43, and bootstrap identifiability = 0.59. Preadministration of WAY100635 and 8-OH-DPAT resulted in 87% and 76% average reductions in BPF values, respectively, across ROIs. Conclusion: On the basis of the measurable free fraction, high affinity and selectivity, adequate blood–brain permeability, and favorable plasma and brain kinetics, 11C-CUMI-101 is an excellent candidate for imaging high-affinity 5-HT1ARs in humans.


Journal of Cerebral Blood Flow and Metabolism | 2011

In vivo serotonin-sensitive binding of [11C]CUMI-101: a serotonin 1A receptor agonist positron emission tomography radiotracer

Matthew S. Milak; Alin J. Severance; Jaya Prabhakaran; J.S. Dileep Kumar; Vattoly J. Majo; R. Todd Ogden; J. John Mann; Ramin V. Parsey

Positron emission tomography studies of 5-hydroxytryptamine (5-HT)1A receptors have hitherto been limited to antagonist radiotracers. Antagonists do not distinguish high/low-affinity conformations of G protein-coupled receptors and are less likely to be sensitive to intrasynaptic serotonin levels. We developed a novel 5-HT1A agonist radiotracer [11C]CUMI-101. This study evaluates the sensitivity of [11C]CUMI-101 binding to increases in intrasynaptic serotonin induced by intravenous citalopram and fenfluramine. Two Papio anubis were scanned, using [11C]CUMI-101 intravenous bolus of 4.5±1.5 mCi. Binding potential (BPF=Bavail/KD) was measured before (n=10) and 20 minutes after elevation of intrasynaptic serotonin by intravenous citalopram (2 mg/kg, n=3; 4 mg/kg, n=3) and fenfluramine (2.5 mg/kg, n=3) using a metabolite-corrected arterial input function. Occupancy was also estimated by the Lassen graphical approach. Both citalopram and fenfluramine effects were significant for BPF (P=0.031, P=0.049, respectively). The Lassen approach estimated 15.0, 30.4, and 23.7% average occupancy after citalopram 2 mg/kg, 4 mg/kg, and fenfluramine 2.5 mg/kg, respectively. [11C]CUMI-101 binding is sensitive to a large increase in intrasynaptic serotonin in response to robust pharmacological challenges. These modest changes in BPF may make it unlikely that this ligand will detect changes in intrasynaptic 5-HT under physiologic conditions; future work will focus on evaluating its utility in measuring the responsiveness of the 5-HT system to pharmacological challenges.


Drug Discovery Today | 2013

PET and SPECT tracers for glutamate receptors

Vattoly J. Majo; Jaya Prabhakaran; J. John Mann; J.S. Dileep Kumar

Radioligands for PET imaging of glutamate receptors will have the potential for studying neurological and neuropsychiatric disorders and their diagnosis and therapeutic intervention. Glutamate is the major excitatory neurotransmitter in the brain and is implicated in the pathophysiology of many neurodegenerative and neuropsychiatric disorders. Glutamate and its receptors are potential targets in the treatment of these disorders. Glutamate signaling is mediated through ionotropic and metabotropic receptors. The abundant concentration of these receptors can facilitate their in vivo quantification using positron emission tomography (PET). Glutamate receptors are a potentially important set of targets for monitoring disease progression, for evaluating the effect of therapy and for new treatment development based on the quantification of receptor occupancy. Here, we review the PET and single-photon emission computed tomography (SPECT) radioligands that have been developed for imaging glutamate receptors in living brain.


Bioorganic & Medicinal Chemistry Letters | 2013

Synthesis and in vitro evaluation of [18F]BMS-754807: a potential PET ligand for IGF-1R.

Vattoly J. Majo; Victoria Arango; Norman Simpson; Jaya Prabhakaran; Suham Kassir; Mark D. Underwood; Mihran J. Bakalian; Peter Canoll; J. John Mann; J.S. Dileep Kumar

Radiosynthesis and in vitro evaluation of [(18)F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([(18)F]BMS-754807 or [(18)F]1) a specific IGF-1R inhibitor was performed. [(18)F]1 demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard 1 and corresponding bromo derivative (1a), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine (4) in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [(18)F]TBAF in DMSO at 170°C at high radiochemical purity and specific activity (1-2Ci/μmol, N=10). The proof of concept of IGF-IR imaging with [(18)F]1 was demonstrated by in vitro autoradiography studies using pathologically identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [(18)F]1 can be a potential PET tracer for monitoring IGF-1R.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and in vivo evaluation of [11C]MPTQ: A potential PET tracer for alpha2A-adrenergic receptors

Jaya Prabhakaran; Vattoly J. Majo; Matthew S. Milak; Pratap Mali; Lyudmila Savenkova; J. John Mann; Ramin V. Parsey; J.S. Dileep Kumar

Radiosynthesis and in vivo evaluation of [N-methyl-(11)C] 5-methyl-3-[4-(3-phenylallyl)-piperazin-1-ylmethyl]-3,3a,4,5-tetrahydroisoxazolo[4,3-c]quinoline (1), a potential PET tracer for alpha2-adrenergic receptors is described. Syntheses of nonradioactive standard 1 and corresponding desmethyl precursor 2 were achieved from 2-aminobenzaldehyde in 40% and 65% yields, respectively. Methylation using [(11)C]CH(3)I in presence of aqueous potassium hydroxide in DMSO afforded [(11)C]1 in 25% yield (EOS) with >99% chemical and radiochemical purities with a specific activity ranged from 3-4 Ci/micromol (n=6). The total synthesis time was 30 min from EOB. PET studies in anesthetized baboon show that [(11)C]1 penetrates BBB and accumulates in alpha2A-AR enriched brain areas.


Bioorganic & Medicinal Chemistry Letters | 2012

Synthesis and in vitro evaluation of [18F](R)-FEPAQ: a potential PET ligand for VEGFR2.

Jaya Prabhakaran; Victoria Arango; Vattoly J. Majo; Norman Simpson; Suham Kassir; Mark D. Underwood; Hanish Polavarapu; Jeffrey N. Bruce; Peter Canoll; J. John Mann; J.S. Dileep Kumar

Synthesis and in vitro evaluation of [(18)F](R)-N-(4-bromo-2-fluorophenyl)-7-((1-(2-fluoroethyl)piperidin-3-yl)methoxy)-6-methoxyquinazolin-4-amine ((R)-[(18)F]FEPAQ or [(18)F]1), a potential imaging agent for the VEGFR2, using phosphor image autoradiography are described. Synthesis of 2, the desfluoroethyl precursor for (R)-FEPAQ was achieved from t-butyl 3-(hydroxymethyl)piperidine-1-carboxylate (3) in five steps and in 50% yield. [(18)F]1 was synthesized by reaction of sodium salt of compound 2 with [(18)F]fluoroethyl tosylate in DMSO. The yield of [(18)F]1 was 20% (EOS based on [(18)F]F(-)) with >99% radiochemical purity and specific activity of 1-2 Ci/μmol (n=10). The total synthesis time was 75 min. The radiotracer selectively labeled VEGFR2 in slide-mounted sections of human brain and higher binding was found in surgically removed human glioblastoma sections as demonstrated by in vitro phosphor imager studies. These findings suggest [(18)F]1 may be a promising radiotracer for imaging VEGFR2 in brain using PET.


Bioorganic & Medicinal Chemistry Letters | 2014

Synthesis and evaluation of arylpiperazines derivatives of 3,5-dioxo-(2H,4H)-1,2,4-triazine as 5-HT1AR ligands

J.S. Dileep Kumar; Vattoly J. Majo; Jaya Prabhakaran; J. John Mann

5-HT1AR agonist or partial agonists are established drug candidates for psychiatric and neurological disorders. We have reported the synthesis and evaluation of a series of high affinity 5-HT1AR partial agonist PET imaging agents with greater selectivity over α-1AR. The characteristic of these molecules are 3,5-dioxo-(2H,4H)-1,2,4-triazine skeleton tethered to an arylpiperazine unit through an alkyl side chain. The most potent 5-HT1AR agonistic properties were found to be associated with the molecules bearing C-4 alkyl group as the linker. Therefore development of 3,5-dioxo-(2H,4H)-1,2,4-triazine bearing arylpiperazine derivatives may provide high affinity selective 5-HT1AR ligands. Herein we describe the synthesis and evaluation of the binding properties of a series of arylpiperazine analogues of 3,5-dioxo-(2H,4H)-1,2,4-triazine.


Brain Research | 2013

Autoradiographic evaluation of [3H]CUMI-101, a novel, selective 5-HT1AR ligand in human and baboon brain.

J.S. Dileep Kumar; Ramin V. Parsey; Suham Kassir; Vattoly J. Majo; Matthew S. Milak; Jaya Prabhakaran; Norman Simpson; Mark D. Underwood; J. John Mann; Victoria Arango

[11C]CUMI-101 is the first selective serotonin receptor (5-HT1AR) partial agonist radiotracer for positron emission tomography (PET) tested in vivo in nonhuman primates and humans. We evaluated specific binding of [3H]CUMI-101 by quantitative autoradiography studies in postmortem baboon and human brain sections using the 5-HT1AR antagonist WAY-100635 as a displacer. The regional and laminar distributions of [3H]CUMI-101 binding in baboon and human brain sections matched the known distribution of [3H]8-OH-DPAT and [3H]WAY-100635. Prazosin did not measurably displace [3H]CUMI-101 binding in baboon or human brain sections, thereby ruling out [3H]CUMI-101 binding to α1-adrenergic receptors. This study demonstrates that [11C]CUMI-101 is a selective 5-HT1AR ligand for in vivo and in vitro studies in baboon and human brain.


International Journal of Toxicology | 2011

Biodistribution, Toxicology, and Radiation Dosimetry of 5-HT1A-Receptor Agonist Positron Emission Tomography Ligand [11C]CUMI-101

Dileep Kumar; Bing Bai; Hanna H. Ng; Jon C. Mirsalis; Kjell Erlandsson; Matthew S. Milak; Vattoly J. Majo; Jaya Prabhakaran; J. John Mann; Ramin V. Parsey

Sprague Dawley rats (10/sex/group) were given a single intravenous (iv) dose of CUMI-101 to determine acute toxicity of CUMI-101 and radiation dosimetry estimations were conducted in baboons with [11C]CUMI-101. Intravenous administration of CUMI-101 did not produce overt biologically or toxicologically significant adverse effects except transient hypoactivity immediately after dose in the mid- and high-dose groups, which is not considered to be a dose-limiting toxic effect. No adverse effects were observed in the low-dose group. The no observed adverse effect level (NOAEL) is considered to be 44.05 µg/kg for a single iv dose administration in rats. The maximum tolerated dose (MTD) was estimated to be 881 µg/kg for a single iv dose administration. The Medical Internal Radiation Dose (MIRDOSE) estimates indicate the maximum permissible single-study dosage of [11C]CUMI-101 in humans is 52 mCi with testes and urinary bladder as the critical organ for males and females, respectively.

Collaboration


Dive into the Vattoly J. Majo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norman Simpson

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge