Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.S. Lott is active.

Publication


Featured researches published by J.S. Lott.


Tuberculosis | 2003

The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology

Thomas C. Terwilliger; Min S. Park; Geoffrey S. Waldo; Joel Berendzen; Li-Wei Hung; Chang-Yub Kim; Clare V Smith; James C. Sacchettini; Marco Bellinzoni; Roberto T. Bossi; E. De Rossi; Andrea Mattevi; Anna Milano; Giovanna Riccardi; Menico Rizzi; M.M. Roberts; A.R. Coker; G. Fossati; P. Mascagni; Anthony R. M. Coates; S.P. Wood; Celia W. Goulding; Marcin I. Apostol; D.H. Anderson; H.S. Gill; David Eisenberg; B. Taneja; Shekhar C. Mande; Ehmke Pohl; V. Lamzin

The TB Structural Genomics Consortium is an organization devoted to encouraging, coordinating, and facilitating the determination and analysis of structures of proteins from Mycobacterium tuberculosis. The Consortium members hope to work together with other M. tuberculosis researchers to identify M. tuberculosis proteins for which structural information could provide important biological information, to analyze and interpret structures of M. tuberculosis proteins, and to work collaboratively to test ideas about M. tuberculosis protein function that are suggested by structure or related to structural information. This review describes the TB Structural Genomics Consortium and some of the proteins for which the Consortium is in the progress of determining three-dimensional structures.


Acta Crystallographica Section D-biological Crystallography | 2005

A Flexible And Economical Medium-Throughput Strategy for Protein Production And Crystallization

Nicole J. Moreland; R. Ashton; Heather M. Baker; Ivan Ivanovic; S. Patterson; Vickery L. Arcus; Edward N. Baker; J.S. Lott

Large-scale structural genomics centres rely heavily on robotics to ensure that maximum throughput is achieved. However, the size and cost of these approaches is out of the reach of most academic structural biology efforts. A major challenge for such groups is to adapt current high-throughput schemes to a reasonable scale with the resources available. A flexible medium-throughput approach has been developed that is suitable for typical academic research groups. Following nested PCR, targets are routinely cloned into two Gateway expression vectors (pDEST15 for an N-terminal GST tag and pDEST17 for an N-terminal His tag). Expression of soluble recombinant protein in Escherichia coli is rapidly assessed in 96-well format. An eight-probe sonicator is utilized and a six-buffer lysis screen was incorporated to enhance solubility. Robotics is reserved for crystallization, since this is the key bottleneck for crystallography. Screening proteins with a 480-condition protocol using a Cartesian nanolitre-dispensing robot has increased crystallization success markedly, with an overall success rate (structures solved out of proteins screened) of 19%. The methods are robust and economical -- with the exception of the crystallization robot, investment in additional equipment has been minimal at 9000 US dollars. All protocols are designed for individuals so that graduate students and postdoctoral fellows gain expertise in every aspect of the structural pipeline, from cloning to crystallization.


Infectious disorders drug targets | 2007

High throughput crystallography of TB drug targets.

A.C. Murillo; Hongye Li; T. Alber; Edward N. Baker; J.M. Berger; L.T. Cherney; M.M. Cherney; Yoon Song Cho; David Eisenberg; C.R. Garen; Celia W. Goulding; Li-Wei Hung; Thomas R. Ioerger; William R. Jacobs; M.N.G.James; Chang-Yub Kim; Inna Krieger; J.S. Lott; Ramasamy Sankaranarayanan; Brent W. Segelke; Thomas C. Terwilliger; F.Wang; S. Wang; James C. Sacchettini

Tuberculosis (TB) infects one-third of the world population. Despite 50 years of available drug treatments, TB continues to increase at a significant rate. The failure to control TB stems in part from the expense of delivering treatment to infected individuals and from complex treatment regimens. Incomplete treatment has fueled the emergence of multi-drug resistant (MDR) strains of Mycobacterium tuberculosis (Mtb). Reducing non-compliance by reducing the duration of chemotherapy will have a great impact on TB control. The development of new drugs that either kill persisting organisms, inhibit bacilli from entering the persistent phase, or convert the persistent bacilli into actively growing cells susceptible to our current drugs will have a positive effect. We are taking a multidisciplinary approach that will identify and characterize new drug targets that are essential for persistent Mtb. Targets are exposed to a battery of analyses including microarray experiments, bioinformatics, and genetic techniques to prioritize potential drug targets from Mtb for structural analysis. Our core structural genomics pipeline works with the individual laboratories to produce diffraction quality crystals of targeted proteins, and structural analysis will be completed by the individual laboratories. We also have capabilities for functional analysis and the virtual ligand screening to identify novel inhibitors for target validation. Our overarching goals are to increase the knowledge of Mtb pathogenesis using the TB research community to drive structural genomics, particularly related to persistence, develop a central repository for TB research reagents, and discover chemical inhibitors of drug targets for future development of lead compounds.


Journal of Biological Chemistry | 2016

The structure of the transcriptional repressor Kstr in complex with CoA thioester cholesterol metabolites sheds light on the regulation of cholesterol catabolism in Mycobacterium tuberculosis

N A T Ho; Stephanie S. Dawes; Adam M. Crowe; Israël Casabon; Chen Gao; Sharon L. Kendall; Edward N. Baker; Lindsay D. Eltis; J.S. Lott

Cholesterol can be a major carbon source for Mycobacterium tuberculosis during infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, including kstR, are either induced during infection or are essential for survival of M. tuberculosis in vivo. In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50 for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release.


Journal of Biological Chemistry | 2006

The structure of an ancient conserved domain establishes a structural basis for stable histidine phosphorylation and identifies a new family of adenosine-specific kinases.

J.S. Lott; Bj Paget; Jodie M. Johnston; Louis T. J. Delbaere; Ja Sigrell-simon; Mark J. Banfield; Edward N. Baker

Phosphorylation of both small molecules and proteins plays a central role in many biological processes. In proteins, phosphorylation most commonly targets the oxygen atoms of Ser, Thr, and Tyr. In contrast, stably phosphorylated His residues are rarely found, due to the lability of the N-P bond, and histidine phosphorylation features most often in transient processes. Here we present the crystal structure of a protein of previously unknown function, which proves to contain a stably phosphorylated histidine residue. The protein is the product of open reading frame PAE2307, from the hyperthermophilic archaeon Pyrobaculum aerophilum, and is representative of a highly conserved protein family found in archaea and bacteria. The crystal structure of PAE2307, solved at 1.45-Å resolution (R = 0.208, Rfree = 0.227), forms a remarkably tightly associated hexamer. The phosphorylated histidine at the proposed active site, pHis85, occupies a cavity that is at the interface between two subunits and contains a number of fully conserved residues. Stable phosphorylation is attributed to favorable hydrogen bonding of the phosphoryl group and a salt bridge with pHis85 that provides electronic stabilization. In silico modeling suggested that the protein may function as an adenosine kinase, a conclusion that is supported by in vitro assays of adenosine binding, using fluorescence spectroscopy, and crystallographic visualization of an adenosine complex of PAE2307 at 2.25-Å resolution.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2005

Crystallization and preliminary X-ray crystallographic analysis of MbtI, a protein essential for siderophore biosynthesis in Mycobacterium tuberculosis

A.J. Harrison; R.J. Ramsay; Edward N. Baker; J.S. Lott

Mycobacterium tuberculosis, the causative agent of tuberculosis, depends on the secretion of salicylate-based siderophores called mycobactins for the acquisition of extracellular iron, which is essential for the growth and virulence of the bacterium. The protein MbtI is thought to be the isochorismate synthase enzyme responsible for the conversion of chorismate to isochorismate, the first step in the salicylate production required for mycobactin biosynthesis. MbtI has been overexpressed in Escherichia coli, purified and crystallized. The crystals diffract to a maximum resolution of 1.8 A. They belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 51.8, b = 163.4, c = 194.9 A, consistent with the presence of either two, three or four molecules in the asymmetric unit.


Acta Crystallographica Section D-biological Crystallography | 2001

Structure of Hisf, a Histidine Biosynthetic Protein from Pyrobaculum Aerophilum

Mark J. Banfield; J.S. Lott; Vickery L. Arcus; Andrew A. McCarthy; Edward N. Baker

HisF (imidazole glycerol phosphate synthase) is an important branch-point enzyme in the histidine biosynthetic pathway of microorganisms. Because of its potential relevance for structure-based drug design, the crystal structure of HisF from the hyperthermophilic archaeon Pyrobaculum aerophilum has been determined. The structure was determined by molecular replacement and refined at 2.0 A resolution to a crystallographic R factor of 20.6% and a free R of 22.7%. The structure adopts a classic (beta/alpha)(8) barrel fold and has networks of surface salt bridges that may contribute to thermostability. The active site is marked out by the presence of two bound phosphate ions and two glycerol molecules that delineate a long groove at one end of the (beta/alpha)(8) barrel. The two phosphate ions, 17 A apart, are bound to sequence-conserved structural motifs that seem likely to provide much of the specificity for the two phosphate groups of the HisF substrate. The two glycerol molecules bind in the vicinity of other sequence-conserved residues that are likely to be involved in binding and/or catalysis. Comparisons with the homologous HisF from Thermatoga maritima reveal a displaced loop that may serve as a lid over the active site.


Acta Crystallographica Section D-biological Crystallography | 2015

Structure and inhibition of subunit I of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex.

Ghader Bashiri; Jodie M. Johnston; Genevieve L. Evans; Esther M. M. Bulloch; David C. Goldstone; E.N.M. Jirgis; Silke Kleinboelting; A. Castell; R.J. Ramsay; Alexandra Manos-Turvey; Richard J. Payne; J.S. Lott; Edward N. Baker

The tryptophan-biosynthesis pathway is essential for Mycobacterium tuberculosis (Mtb) to cause disease, but not all of the enzymes that catalyse this pathway in this organism have been identified. The structure and function of the enzyme complex that catalyses the first committed step in the pathway, the anthranilate synthase (AS) complex, have been analysed. It is shown that the open reading frames Rv1609 (trpE) and Rv0013 (trpG) encode the chorismate-utilizing (AS-I) and glutamine amidotransferase (AS-II) subunits of the AS complex, respectively. Biochemical assays show that when these subunits are co-expressed a bifunctional AS complex is obtained. Crystallization trials on Mtb-AS unexpectedly gave crystals containing only AS-I, presumably owing to its selective crystallization from solutions containing a mixture of the AS complex and free AS-I. The three-dimensional structure reveals that Mtb-AS-I dimerizes via an interface that has not previously been seen in AS complexes. As is the case in other bacteria, it is demonstrated that Mtb-AS shows cooperative allosteric inhibition by tryptophan, which can be rationalized based on interactions at this interface. Comparative inhibition studies on Mtb-AS-I and related enzymes highlight the potential for single inhibitory compounds to target multiple chorismate-utilizing enzymes for TB drug discovery.


Acta Crystallographica Section D-biological Crystallography | 2015

A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket

A.-F. Chai; Esther M. M. Bulloch; Genevieve L. Evans; J.S. Lott; Edward N. Baker; Jodie M. Johnston

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Å resolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2013

Purification, crystallization and preliminary X-ray studies of MbtN (Rv1346) from Mycobacterium tuberculosis

A.-F. Chai; Jodie M. Johnston; Richard D. Bunker; Esther M. M. Bulloch; Genevieve L. Evans; J.S. Lott; Edward N. Baker

In Mycobacterium tuberculosis, the protein MbtN (Rv1346) catalyzes the formation of a double bond in the fatty-acyl moiety of the siderophore mycobactin, which is used by this organism to acquire essential iron. MbtN is homologous to acyl-CoA dehydrogenases, whose general role is to catalyze the α,β-dehydrogenation of fatty-acyl-CoA conjugates. Mycobactins, however, contain a long unsaturated fatty-acid chain with an unusual cis double bond conjugated to the carbonyl group of the mycobactin core. To characterize the role of MbtN in the dehydrogenation of this fatty-acyl moiety, the enzyme has been expressed, purified and crystallized. The crystals diffracted to 2.3 Å resolution at a synchrotron source and were found to belong to the hexagonal space group H32, with unit-cell parameters a = b = 139.10, c = 253.09 Å, α = β = 90, γ = 120°.

Collaboration


Dive into the J.S. Lott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Castell

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.-F. Chai

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge