Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jodie M. Johnston is active.

Publication


Featured researches published by Jodie M. Johnston.


Current Drug Targets - Infectious Disorders | 2002

The TB structural genomics consortium: Providing a structural foundation for drug discovery

Celia W. Goulding; Marcin I. Apostol; Daniel H. Anderson; Harindarpal S. Gill; Clare V. Smith; Mack Kuo; Jin KukYang; Geoffrey S. Waldo; Se Won Suh; Radha Chauhan; Avinash Kale; Nandita Bachhawat; Shekhar C. Mande; Jodie M. Johnston; J. Shaun Lott; Edward N. Baker; Vickery L. Arcus; David Leys; Kirsty J. McLean; Andrew W. Munro; Joel Berendzen; Vivek Sharma; Min S. Park; David Eisenberg; James C. Sacchettini; Tom Alber; Bernhard Rupp; William R. Jacobs; Thomas C. Terwilliger

Structural genomics, the large-scale determination of protein structures, promises to provide a broad structural foundation for drug discovery. The tuberculosis (TB) Structural Genomics Consortium is devoted to encouraging, coordinating, and facilitating the determination of structures of proteins from Mycobacterium tuberculosis and hopes to determine 400 TB protein structures over 5 years. The Consortium has determined structures of 28 proteins from TB to date. These protein structures are already providing a basis for drug discovery efforts.


Acta Crystallographica Section D-biological Crystallography | 2005

Structure of naphthoate synthase (MenB) from Mycobacterium tuberculosis in both native and product-bound forms

Jodie M. Johnston; Vickery L. Arcus; Edward N. Baker

Mycobacterium tuberculosis, the cause of tuberculosis, is one of the most devastating human pathogens. New drugs for its control are urgently needed. Menaquinone, also known as vitamin K, is an essential cofactor that is required for electron transfer and the enzymes that synthesize it are therefore potential drug targets. The enzyme naphthoate synthase (MenB) from M. tuberculosis has been expressed in Escherichia coli, purified and crystallized both as the native enzyme and in complex with naphthoyl-CoA. Both structures have been determined by X-ray crystallography: native MenB at 2.15 A resolution (R = 0.203, R(free) = 0.231) and its napthoyl-CoA complex at 2.30 A resolution (R = 0.197, R(free) = 0.225). The protein structure, which has a fold characteristic of the crotonase family of enzymes, is notable for the presence of several highly flexible regions around the active site. The bound naphthoyl-CoA is only visible for one of the three molecules in the asymmetric unit and only partly rigidifies the structure. The C-terminal region of the protein is seen to play a critical role both in completion of the binding pocket and in stabilization of the hexamer, suggesting a link between oligomerization and catalytic activity.


Drug Discovery Today | 2006

The potential impact of structural genomics on tuberculosis drug discovery

Vickery L. Arcus; J. Shaun Lott; Jodie M. Johnston; Edward N. Baker

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB) in humans, is a devastating infectious organism that kills approximately two million people annually. The current suite of antibiotics used to treat TB faces two main difficulties: (i) the emergence of multidrug-resistant (MDR) strains of M. tuberculosis, and (ii) the persistent state of the bacterium, which is less susceptible to antibiotics and causes very long antibiotic treatment regimes. The complete genome sequences of a laboratory strain (H37Rv) and a clinical strain (CDC1551) of M. tuberculosis and the concurrent identification of all the open reading frames that encode proteins within this organism, present structural biologists with a wide array of protein targets for structure determination. Comparative genomics of the species that make up the M. tuberculosis complex has also added an array of genomic information to our understanding of these organisms. In response to this, structural genomics consortia have been established for targeting proteins from M. tuberculosis. This review looks at the progress of these major initiatives and the potential impact of large scale structure determination efforts on the development of inhibitors to many proteins. Increasing sophistication in structure-based drug design approaches, in combination with increasing numbers of protein structures and inhibitors for TB proteins, will have a significant impact on the downstream development of TB antibiotics.


Tuberculosis | 2011

The TB Structural Genomics Consortium: A decade of progress

Nicholas Chim; Jeff E. Habel; Jodie M. Johnston; Inna Krieger; Linda Miallau; Ramasamy Sankaranarayanan; Robert P. Morse; John B. Bruning; Stephanie Swanson; Haelee Kim; Chang-Yub Kim; Hongye Li; Esther M. M. Bulloch; Richard J. Payne; Alexandra Manos-Turvey; Li-Wei Hung; Edward N. Baker; J. Shaun Lott; Michael N. G. James; Thomas C. Terwilliger; David Eisenberg; James C. Sacchettini; Celia W. Goulding

The TB Structural Genomics Consortium is a worldwide organization of collaborators whose mission is the comprehensive structural determination and analyses of Mycobacterium tuberculosis proteins to ultimately aid in tuberculosis diagnosis and treatment. Congruent to the overall vision, Consortium members have additionally established an integrated facilities core to streamline M. tuberculosis structural biology and developed bioinformatics resources for data mining. This review aims to share the latest Consortium developments with the TB community, including recent structures of proteins that play significant roles within M. tuberculosis. Atomic resolution details may unravel mechanistic insights and reveal unique and novel protein features, as well as important protein-protein and protein-ligand interactions, which ultimately lead to a better understanding of M. tuberculosis biology and may be exploited for rational, structure-based therapeutics design.


Journal of Bacteriology | 2003

Crystal Structure of a Putative Methyltransferase from Mycobacterium tuberculosis: Misannotation of a Genome Clarified by Protein Structural Analysis

Jodie M. Johnston; Vickery L. Arcus; Craig J. Morton; Michael W. Parker; Edward N. Baker

Bioinformatic analyses of whole genome sequences highlight the problem of identifying the biochemical and cellular functions of many gene products that are at present uncharacterized. The open reading frame Rv3853 from Mycobacterium tuberculosis has been annotated as menG and assumed to encode an S-adenosylmethionine (SAM)-dependent methyltransferase that catalyzes the final step in menaquinone biosynthesis. The Rv3853 gene product has been expressed, refolded, purified, and crystallized in the context of a structural genomics program. Its crystal structure has been determined by isomorphous replacement and refined at 1.9 A resolution to an R factor of 19.0% and R(free) of 22.0%. The structure strongly suggests that this protein is not a SAM-dependent methyltransferase and that the gene has been misannotated in this and other genomes that contain homologs. The protein forms a tightly associated, disk-like trimer. The monomer fold is unlike that of any known SAM-dependent methyltransferase, most closely resembling the phosphohistidine domains of several phosphotransfer systems. Attempts to bind cofactor and substrate molecules have been unsuccessful, but two adventitiously bound small-molecule ligands, modeled as tartrate and glyoxalate, are present on each monomer. These may point to biologically relevant binding sites but do not suggest a function. In silico screening indicates a range of ligands that could occupy these and other sites. The nature of these ligands, coupled with the location of binding sites on the trimer, suggests that proteins of the Rv3853 family, which are distributed throughout microbial and plant species, may be part of a larger assembly binding to nucleic acids or proteins.


Biochemistry | 2012

Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis

Gamma Chi; Alexandra Manos-Turvey; Patrick D. O’Connor; Jodie M. Johnston; Genevieve L. Evans; Edward N. Baker; Richard J. Payne; J. Shaun Lott; Esther M. M. Bulloch

MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family.


Journal of Biological Chemistry | 2006

The structure of an ancient conserved domain establishes a structural basis for stable histidine phosphorylation and identifies a new family of adenosine-specific kinases.

J.S. Lott; Bj Paget; Jodie M. Johnston; Louis T. J. Delbaere; Ja Sigrell-simon; Mark J. Banfield; Edward N. Baker

Phosphorylation of both small molecules and proteins plays a central role in many biological processes. In proteins, phosphorylation most commonly targets the oxygen atoms of Ser, Thr, and Tyr. In contrast, stably phosphorylated His residues are rarely found, due to the lability of the N-P bond, and histidine phosphorylation features most often in transient processes. Here we present the crystal structure of a protein of previously unknown function, which proves to contain a stably phosphorylated histidine residue. The protein is the product of open reading frame PAE2307, from the hyperthermophilic archaeon Pyrobaculum aerophilum, and is representative of a highly conserved protein family found in archaea and bacteria. The crystal structure of PAE2307, solved at 1.45-Å resolution (R = 0.208, Rfree = 0.227), forms a remarkably tightly associated hexamer. The phosphorylated histidine at the proposed active site, pHis85, occupies a cavity that is at the interface between two subunits and contains a number of fully conserved residues. Stable phosphorylation is attributed to favorable hydrogen bonding of the phosphoryl group and a salt bridge with pHis85 that provides electronic stabilization. In silico modeling suggested that the protein may function as an adenosine kinase, a conclusion that is supported by in vitro assays of adenosine binding, using fluorescence spectroscopy, and crystallographic visualization of an adenosine complex of PAE2307 at 2.25-Å resolution.


Acta Crystallographica Section D-biological Crystallography | 2010

Structural and functional analysis of Rv0554 from Mycobacterium tuberculosis: testing a putative role in menaquinone biosynthesis.

Jodie M. Johnston; Ming Jiang; Zhihong Guo; Edward N. Baker

Mycobacterium tuberculosis, the cause of tuberculosis, is a devastating human pathogen against which new drugs are urgently needed. Enzymes from the biosynthetic pathway for menaquinone are considered to be valid drug targets. The protein encoded by the open reading frame Rv0554 has been expressed, purified and subjected to structural and functional analysis to test for a putative role in menaquinone biosynthesis. The crystal structure of Rv0554 has been solved and refined in two different space groups at 2.35 and 1.9 A resolution. The protein is dimeric, with an alpha/beta-hydrolase monomer fold. In each monomer, a large cavity adjacent to the catalytic triad is enclosed by a helical lid. Dimerization is mediated by the lid regions. Small-molecule additives used in crystallization bind in the active site, but no binding of ligands related to menaquinone biosynthesis could be detected and functional assays failed to support possible roles in menaquinone biosynthesis.


Acta Crystallographica Section D-biological Crystallography | 2015

Structure and inhibition of subunit I of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex.

Ghader Bashiri; Jodie M. Johnston; Genevieve L. Evans; Esther M. M. Bulloch; David C. Goldstone; E.N.M. Jirgis; Silke Kleinboelting; A. Castell; R.J. Ramsay; Alexandra Manos-Turvey; Richard J. Payne; J.S. Lott; Edward N. Baker

The tryptophan-biosynthesis pathway is essential for Mycobacterium tuberculosis (Mtb) to cause disease, but not all of the enzymes that catalyse this pathway in this organism have been identified. The structure and function of the enzyme complex that catalyses the first committed step in the pathway, the anthranilate synthase (AS) complex, have been analysed. It is shown that the open reading frames Rv1609 (trpE) and Rv0013 (trpG) encode the chorismate-utilizing (AS-I) and glutamine amidotransferase (AS-II) subunits of the AS complex, respectively. Biochemical assays show that when these subunits are co-expressed a bifunctional AS complex is obtained. Crystallization trials on Mtb-AS unexpectedly gave crystals containing only AS-I, presumably owing to its selective crystallization from solutions containing a mixture of the AS complex and free AS-I. The three-dimensional structure reveals that Mtb-AS-I dimerizes via an interface that has not previously been seen in AS complexes. As is the case in other bacteria, it is demonstrated that Mtb-AS shows cooperative allosteric inhibition by tryptophan, which can be rationalized based on interactions at this interface. Comparative inhibition studies on Mtb-AS-I and related enzymes highlight the potential for single inhibitory compounds to target multiple chorismate-utilizing enzymes for TB drug discovery.


PLOS ONE | 2013

Crystal Structures of E. coli Native MenH and Two Active Site Mutants.

Jodie M. Johnston; Ming Jiang; Zhihong Guo; Edward N. Baker

Recent revision of the biosynthetic pathway for menaquinone has led to the discovery of a previously unrecognized enzyme 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase, also known as MenH. This enzyme has an α/β hydrolase fold with a catalytic triad comprising Ser86, His232, and Asp210. Mutational studies identified a number of conserved residues of importance to activity, and modeling further implicated the side chains of Tyr85 and Trp147 in formation of a non-standard oxyanion hole. We have solved the structure of E. coli MenH (EcMenH) at 2.75 Å resolution, together with the structures of the active site mutant proteins Tyr85Phe and Arg124Ala, both at 2.5 Å resolution. EcMenH has the predicted α/β hydrolase fold with its core α/β domain capped by a helical lid. The active site, a long groove beneath the cap, contains a number of conserved basic residues and is found to bind exogeneous anions, modeled as sulfate and chloride, in all three crystal structures. Docking studies with the MenH substrate and a transition state model indicate that the bound anions mark the binding sites for anionic groups on the substrate. The docking studies, and careful consideration of the active site geometry, further suggest that the oxyanion hole is of a conventional nature, involving peptide NH groups, rather than the proposed site involving Tyr85 and Trp147. This is in accord with conclusions from the structure of S. aureus MenH. Comparisons with the latter do, however, indicate differences in the periphery of the active site that could be of relevance to selective inhibition of MenH enzymes.

Collaboration


Dive into the Jodie M. Johnston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.S. Lott

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhihong Guo

Hong Kong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge