Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Seshu is active.

Publication


Featured researches published by J. Seshu.


Infection and Immunity | 2011

Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum Infection

Ashlesh K. Murthy; Weidang Li; Bharat K R Chaganty; Sangamithra Kamalakaran; M. Neal Guentzel; J. Seshu; Thomas G. Forsthuber; Guangming Zhong; Bernard P. Arulanandam

ABSTRACT The immunopathogenesis of Chlamydia trachomatis-induced oviduct pathological sequelae is not well understood. Mice genetically deficient in perforin (perforin−/− mice) or tumor necrosis factor alpha (TNF-α) production (TNF-α−/− mice) displayed comparable vaginal chlamydial clearance rates but significantly reduced oviduct pathology (hydrosalpinx) compared to that of wild-type mice. Since both perforin and TNF-α are effector mechanisms of CD8+ T cells, we evaluated the role of CD8+ T cells during genital Chlamydia muridarum infection and oviduct sequelae. Following vaginal chlamydial challenge, (i) mice deficient in TAP I (and therefore the major histocompatibility complex [MHC] I pathway and CD8+ T cells), (ii) wild-type mice depleted of CD8+ T cells, and (iii) mice genetically deficient in CD8 (CD8−/− mice) all displayed similar levels of vaginal chlamydial clearance but significantly reduced hydrosalpinx, compared to those of wild-type C57BL/6 mice, suggesting a role for CD8+ T cells in chlamydial pathogenesis. Repletion of CD8−/− mice with wild-type or perforin−/−, but not TNF-α−/−, CD8+ T cells at the time of challenge restored hydrosalpinx to levels observed in wild-type C57BL/6 mice, suggesting that TNF-α production from CD8+ T cells is important for pathogenesis. Additionally, repletion of TNF-α−/− mice with TNF-α+/+ CD8+ T cells significantly enhanced the incidence of hydrosalpinx and oviduct dilatation compared to those of TNF-α−/− mice but not to the levels found in wild-type mice, suggesting that TNF-α production from CD8+ T cells and non-CD8+ cells cooperates to induce optimal oviduct pathology following genital chlamydial infection. These results provide compelling new evidence supporting the contribution of CD8+ T cells and TNF-α production to Chlamydia-induced reproductive tract sequelae.


Journal of Immunology | 2008

Antigen-Specific CD4+ T Cells Produce Sufficient IFN-γ to Mediate Robust Protective Immunity against Genital Chlamydia muridarum Infection

Weidang Li; Ashlesh K. Murthy; M. Neal Guentzel; J. Seshu; Thomas G. Forsthuber; Guangming Zhong; Bernard P. Arulanandam

Chlamydia has been shown to evade host-specific IFN-γ-mediated bacterial killing; however, IFN-γ-deficient mice exhibit suboptimal late phase vaginal Chlamydia muridarum clearance, greater dissemination, and oviduct pathology. These findings introduce constraints in understanding results from murine chlamydial vaccination studies in context of potential implications to humans. In this study, we used mice deficient in either IFN-γ or the IFN-γ receptor for intranasal vaccination with a defined secreted chlamydial Ag, chlamydial protease-like activity factor (CPAF), plus CpG and examined the role of IFN-γ derived from adoptively transferred Ag-specific CD4+ T cells in protective immunity against genital C. muridarum infection. We found that early Ag-specific IFN-γ induction and CD4+ T cell infiltration correlates with the onset of genital chlamydial clearance. Adoptively transferred IFN-γ competent CPAF-specific CD4+ T cells failed to enhance the resolution of genital chlamydial infection within recipient IFN-γ receptor-deficient mice. Conversely, IFN-γ production from adoptively transferred CPAF-specific CD4+ T cells was sufficient in IFN-γ-deficient mice to induce early resolution of infection and reduction of subsequent pathology. These results provide the first direct evidence that enhanced anti-C. muridarum protective immunity induced by Ag-specific CD4+ T cells is dependent upon IFN-γ signaling and that such cells produce sufficient IFN-γ to mediate the protective effects. Additionally, MHC class II pathway was sufficient for induction of robust protective anti-C. muridarum immunity. Thus, targeting soluble candidate Ags via MHC class II to CD4+ T cells may be a viable vaccine strategy to induce optimal IFN-γ production for effective protective immunity against human genital chlamydial infection.


Molecular Microbiology | 2009

sodA is essential for virulence of Borrelia burgdorferi in the murine model of Lyme disease.

Maria D. Esteve-Gassent; Nathaniel L. Elliott; J. Seshu

Borrelia burgdorferi, the causative agent of Lyme disease, has a limited set of genes to combat oxidative/nitrosative stress encountered in its tick vector or mammalian hosts. We inactivated the gene encoding for superoxide dismutase A (sodA, bb0153), an enzyme mediating the dismutation of superoxide anions and examined the in vitro and in vivo phenotype of the mutant. There were no significant differences in the in vitro growth characteristics of the sodA mutant compared with the control strains. Microscopic analysis of viability of spirochaetes revealed greater percentage of cell death upon treatment of sodA mutant with superoxide generators compared with its controls. Infectivity analysis in C3H/HeN mice following intradermal needle inoculation of 103 or 105 spirochaetes per mouse revealed complete attenuation of infectivity for the sodA mutant compared with control strains at 21 days post infection. The sodA mutant was more susceptible to the effects of activated macrophages and neutrophils, suggesting that its in vivo phenotype is partly due to the killing effects of activated immune cells. These studies indicate that SodA plays an important role in combating oxidative stress and is essential for the colonization and dissemination of B. burgdorferi in the murine model of Lyme disease.


Infection and Immunity | 2011

CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi.

S. L. Rajasekhar Karna; Eva Sanjuan; Maria D. Esteve-Gassent; Christine L. Miller; Mahulena Maruskova; J. Seshu

ABSTRACT Carbon storage regulator A (CsrA) is an RNA binding protein that has been characterized in many bacterial species to play a central regulatory role by modulating several metabolic processes. We recently showed that a homolog of CsrA in Borrelia burgdorferi (CsrABb, BB0184) was upregulated in response to propagation of B. burgdorferi under mammalian host-specific conditions. In order to further delineate the role of CsrABb, we generated a deletion mutant designated ES10 in a linear plasmid 25-negative isolate of B. burgdorferi strain B31 (ML23). The deletion mutant was screened by PCR and Southern blot hybridization, and a lack of synthesis of CsrABb in ES10 was confirmed by immunoblot analysis. Analysis of ES10 propagated at pH 6.8/37°C revealed a significant reduction in the levels of OspC, DbpA, BBK32, and BBA64 compared to those for the parental wild-type strain propagated under these conditions, while there were no significant changes in the levels of either OspA or P66. Moreover, the levels of two regulatory proteins, RpoS and BosR, were also found to be lower in ES10 than in the control strain. Quantitative real-time reverse transcription-PCR analysis of total RNA extracted from the parental strain and csrABb mutant revealed significant differences in gene expression consistent with the changes at the protein level. Neither the csrABb mutant nor the trans-complemented strain was capable of infection following intradermal needle inoculation in C3H/HeN mice at either 103 or 105 spirochetes per mouse. The further characterization of molecular basis of regulation mediated by CsrABb will provide significant insights into the pathophysiology of B. burgdorferi.


Infection and Immunity | 2008

Role of the BBA64 Locus of Borrelia burgdorferi in Early Stages of Infectivity in a Murine Model of Lyme Disease

Mahulena Maruskova; M. Dolores Esteve-Gassent; Valerie L. Sexton; J. Seshu

ABSTRACT Borrelia burgdorferi, the causative agent of Lyme disease, undergoes rapid adaptive gene expression in response to environmental signals encountered during different stages of its life cycle in the arthropod vector or the mammalian host. Among all the plasmid-encoded genes of B. burgdorferi, several linear plasmid 54 (lp54)-encoded open reading frames (ORFs) exhibit the greatest differential expression in response to mammalian host-specific temperature, pH, and other uncharacterized signals. These ORFs include members of the paralogous gene family 54 (pgf 54), such as BBA64, BBA65, and BBA66, present on lp54. In an attempt to correlate transcriptional up-regulation of these pgf 54 members to their role in infectivity, we inactivated BBA64 and characterized the phenotype of this mutant both in vitro and in vivo. There were no major differences in the protein profiles between the BBA64 mutant and the control strains, while immunoblot analysis indicated that inactivation of BBA64 resulted in increased levels of BBA65. Moreover, there was no significant difference in the ability of the BBA64 mutant to infect C3H/HeN mice compared to that of its parental or complemented control strains as determined by culturing of viable spirochetes from infected tissues. However, enumeration of spirochetes using quantitative real-time PCR revealed tissue-specific differences, suggesting a minimal role for BBA64 in the survival of B. burgdorferi in select tissues. Infectivity analysis of the BBA64 mutant suggests that B. burgdorferi may utilize multiple determinants to establish infection in mammalian hosts.


Molecular Microbiology | 2013

Borrelia host adaptation Regulator (BadR) regulates rpoS to modulate host adaptation and virulence factors in Borrelia burgdorferi

Christine L. Miller; S. L. Rajasekhar Karna; J. Seshu

The RpoS transcription factor of Borrelia burgdorferi is a ‘gatekeeper’ because it activates genes required for spirochaetes to transition from tick to vertebrate hosts. However, it remains unknown how RpoS becomes repressed to allow the spirochaetes to transition back from the vertebrate host to the tick vector. Here we show that a putative carbohydrate‐responsive regulatory protein, designated BadR (Borrelia host adaptation Regulator), is a transcriptional repressor of rpoS. BadR levels are elevated in B. burgdorferi cultures grown under in vitro conditions mimicking unfed‐ticks and badR‐deficient strains are defective for growth under these same conditions. Microarray and immunoblot analyses of badR‐deficient strains showed upregulation of rpoS and other factors important for virulence in vertebrate hosts, as well as downregulation of putative tick‐specific determinants (e.g. linear plasmid 28‐4 genes). DNA‐binding assays revealed BadR binds to upstream regions of rpoS. Site‐directed mutations in BadR and the presence of phosphorylated sugars affected BadRs binding to the rpoS promoters. badR‐deficient B. burgdorferi were unable to colonize mice. Several putative tick‐specific targets have been identified. Our study identified a novel regulator, BadR, and provides a link between nutritional environmental cues utilized by spirochaetes to adaptation to disparate conditions found in the tick and vertebrate hosts.


PLOS ONE | 2012

Effect of levels of acetate on the mevalonate pathway of Borrelia burgdorferi.

Tricia A. Van Laar; Ying Han Lin; Christine L. Miller; S. L. Rajasekhar Karna; James P. Chambers; J. Seshu

Borrelia burgdorferi, the agent of Lyme disease, is a spirochetal pathogen with limited metabolic capabilities that survives under highly disparate host-specific conditions. However, the borrelial genome encodes several proteins of the mevalonate pathway (MP) that utilizes acetyl-CoA as a substrate leading to intermediate metabolites critical for biogenesis of peptidoglycan and post-translational modifications of proteins. In this study, we analyzed the MP and contributions of acetate in modulation of adaptive responses in B. burgdorferi. Reverse-transcription PCR revealed that components of the MP are transcribed as individual open reading frames. Immunoblot analysis using monospecific sera confirmed synthesis of members of the MP in B. burgdorferi. The rate-limiting step of the MP is mediated by HMG-CoA reductase (HMGR) via conversion of HMG-CoA to mevalonate. Recombinant borrelial HMGR exhibited a Km value of 132 µM with a Vmax of 1.94 µmol NADPH oxidized minute−1 (mg protein)−1 and was inhibited by statins. Total protein lysates from two different infectious, clonal isolates of B. burgdorferi grown under conditions that mimicked fed-ticks (pH 6.8/37°C) exhibited increased levels of HMGR while other members of the MP were elevated under unfed-tick (pH 7.6/23°C) conditions. Increased extra-cellular acetate gave rise to elevated levels of MP proteins along with RpoS, CsrABb and their respective regulons responsible for mediating vertebrate host-specific adaptation. Both lactone and acid forms of two different statins inhibited growth of B. burgdorferi strain B31, while overexpression of HMGR was able to partially overcome that inhibition. In summary, these studies on MP and contributions of acetate to host-specific adaptation have helped identify potential metabolic targets that can be manipulated to reduce the incidence of Lyme disease.


Clinical and Vaccine Immunology | 2007

Induction of Cross-Serovar Protection against Genital Chlamydial Infection by a Targeted Multisubunit Vaccination Approach

Weidang Li; M. Neal Guentzel; J. Seshu; Guangming Zhong; Ashlesh K. Murthy; Bernard P. Arulanandam

ABSTRACT An important consideration for antichlamydial vaccine development is the induction of cross-serovar protection, since multiple serovars (D to L) of Chlamydia trachomatis cause genital infections. We have shown previously that vaccination with C. trachomatis-derived recombinant chlamydial protease-like activity factor (rCPAF) induced significant earlier resolution of Chlamydia muridarum infection and reduced oviduct pathology. However, the vaccinated mice continued to shed chlamydiae for up to 2 weeks after challenge. In this study, C. trachomatis serovar D recombinant proteins, such as recombinant major outer membrane protein (rMOMP), recombinant inclusion membrane protein A (rIncA), and rCPAF were administered intranasally, individually or in combinations, with murine interleukin-12 (IL-12) as an adjuvant, and cross-species immunity against intravaginal C. muridarum infection was examined. Immunization with rCPAF plus IL-12 (rCPAF+IL-12), compared to immunization with rIncA+IL-12 or rMOMP+IL-12, induced the greatest antigen-specific gamma interferon production from purified CD4+ T cells and concurrently enhanced serum antibody production. All (100%) the animals vaccinated with rCPAF+IL-12 alone or in any combination completely resolved the infection by day 18 after challenge compared to animals vaccinated with rIncA+IL-12 (50%), rMOMP+IL-12 (33%), or phosphate-buffered saline (mock vaccinated; 0%). Moreover, oviduct pathology in mice vaccinated by any regimen that included rCPAF, but not rMOMP+IL-12 or rIncA+IL-12 alone, was markedly reduced compared to mock-immunized animals. The addition of rMOMP and/or rIncA did not significantly enhance the rCPAF+IL-12-induced effect on bacterial clearance or oviduct pathology. These results suggest a greater conservation of protective linear antigenic epitopes within CPAF than MOMP or IncA across the examined serovars and the need to identify other highly conserved antigens for use with rCPAF in a multisubunit recombinant vaccine.


Vaccine | 2009

Vaccination with a defined Francisella tularensis subsp. novicida pathogenicity island mutant (ΔiglB) induces protective immunity against homotypic and heterotypic challenge

Yu Cong; Jieh Juen Yu; M. Neal Guentzel; J. Seshu; Karl E. Klose; Bernard P. Arulanandam

Francisella tularensis, an intracellular Gram-negative bacterium, is the causative agent of tularemia and a potential bioweapon. Currently, there is no licensed vaccine against this organism. We have characterized the efficacy of a defined F. tularensis subsp. novicida mutant (DeltaiglB) as a live attenuated vaccine against pneumonic tularemia. Replication of the iglB mutant (KKF235) in murine macrophages was significantly lower than the wild type novicida strain U112, and exhibited an LD(50) greater than 10(6)-fold (>10(7)CFU vs <10CFU) in an intranasal challenge model. Mice immunized with KKF235 intranasally or orally induced robust antigen-specific splenic IFN-gamma recall responses, as well as the production of systemic and mucosal antibodies. Intranasal vaccination with KKF235 protected mice from subsequent homotypic challenge with U112 as well as heterotypic challenge with F. tularensis subsp. holarctica (LVS). Moreover, protected animals also exhibited minimal pathological changes compared with mock-vaccinated and challenged animals. The protection conferred by KKF235 vaccination was shown to be highly dependent on endogenous IFN-gamma production. Most significantly, oral immunization with KKF235 protected mice from a highly lethal subsp. tularensis (SCHU S4) pulmonary challenge. Collectively, these results further suggest the feasibility of using defined pathogenicity island mutants as live vaccine candidates against pneumonic tularemia.


Infection and Immunity | 2009

Overexpression of CsrA (BB0184) Alters the Morphology and Antigen Profiles of Borrelia burgdorferi

Eva Sanjuan; Maria D. Esteve-Gassent; Mahulena Maruskova; J. Seshu

ABSTRACT Borrelia burgdorferi, the agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its hosts. Among the relatively few regulators of adaptive gene expression present in the borrelial genome is an open reading frame (ORF), BB0184, annotated as CsrA (carbon storage regulator A). CsrA, in several bacterial species, has been characterized as a small RNA binding protein that functions as a global regulator affecting mRNA stability or levels of translation of multiple ORFs. Consistent with known functions of CsrA, overexpression of CsrA from B. burgdorferi (CsrABb) in Escherichia coli resulted in reduced accumulation of glycogen. We determined that csrABb is part of the flgK motility operon and that the synthesis of CsrABb was increased when B. burgdorferi was propagated under fed-tick conditions. Overexpression of CsrABb in B. burgdorferi strain B31 (ML23, lp25-negative clonal isolate) resulted in a clone, designated ES25, which exhibited alterations in colony morphology and a significant reduction in the levels of FlaB. Several lipoproteins previously characterized as playing a role in infectivity were also altered in ES25. Real-time reverse transcription-PCR analysis of RNA revealed significant differences in the transcriptional levels of ospC in ES25, while there were no such differences in the levels of other transcripts, suggesting posttranscriptional regulation of expression of these latter genes. These observations indicate that CsrABb plays a role in the regulation of expression of pathophysiological determinants of B. burgdorferi, and further characterization of CsrABb will help in better understanding of the regulators of gene expression in B. burgdorferi.

Collaboration


Dive into the J. Seshu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Neal Guentzel

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

S. L. Rajasekhar Karna

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

James P. Chambers

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine L. Miller

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Weidang Li

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Guangming Zhong

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Trever C. Smith

University of Texas at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge