Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Skowron is active.

Publication


Featured researches published by J. Skowron.


The Astrophysical Journal | 2013

The structure of the broad-line region in active galactic nuclei. I. Reconstructed velocity-delay maps

C. J. Grier; Bradley M. Peterson; K. Horne; Misty C. Bentz; Richard W. Pogge; K. D. Denney; G. De Rosa; Paul Martini; C. S. Kochanek; Ying Zu; B. J. Shappee; Robert J. Siverd; Thomas G. Beatty; S. G. Sergeev; Shai Kaspi; C. Araya Salvo; Jonathan C. Bird; D. J. Bord; G. A. Borman; Xiao Che; Chien-Ting J. Chen; Seth A. Cohen; Matthias Dietrich; V. T. Doroshenko; Yu. S. Efimov; N. Free; I. Ginsburg; C. B. Henderson; Ashley L. King; K. Mogren

We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C?120, and PG?2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the H? emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C?120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II??4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG?2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C?120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.


The Astrophysical Journal | 2012

MOA-2011-BLG-293Lb: A TEST OF PURE SURVEY MICROLENSING PLANET DETECTIONS

J. C. Yee; Y. Shvartzvald; Avishay Gal-Yam; I. A. Bond; A. Udalski; S. Kozłowski; C. Han; A. Gould; J. Skowron; D. Suzuki; F. Abe; D. P. Bennett; C. S. Botzler; P. Chote; M. Freeman; A. Fukui; K. Furusawa; Y. Itow; S. Kobara; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; Y. Muraki; K. Ohmori; K. Ohnishi; N. J. Rattenbury; To. Saito; D. J. Sullivan; T. Sumi

Mathematical and Physical Sciences: 1st Place (The Ohio State University Edward F. Hayes Graduate Research Forum)


The Astrophysical Journal | 2015

DECIPHERING THE 3D STRUCTURE OF THE OLD GALACTIC BULGE FROM THE OGLE RR LYRAE STARS

P. Pietrukowicz; S. Kozłowski; J. Skowron; I. Soszyński; A. Udalski; R. Poleski; Ł. Wyrzykowski; M. K. Szymański; G. Pietrzyński; K. Ulaczyk; P. Mróz; D. Skowron; M. Kubiak

We have analyzed a sample of 27,258 fundamental-mode RR Lyrae variable stars (type RRab) detected recently toward the Galactic bulge by the Optical Gravitational Lensing Experiment (OGLE) survey. The data support our earlier claim that these metal-poor stars trace closely the barred structure formed of intermediate-age red clump giants. The distance to the Galactic center (GC) inferred from the bulge RR Lyrae stars is R_0=8.27+/-0.01(stat)+/-0.40(sys) kpc. We show that their spatial distribution has the shape of a triaxial ellipsoid with an major axis located in the Galactic plane and inclined at an angle of i=20+/-3 deg to the Sun-GC line of sight. The obtained scale-length ratio of the major axis to the minor axis in the Galactic plane and to the axis vertical to the plane is 1:0.49(2):0.39(2). We do not see the evidence for the bulge RR Lyrae stars forming an X-shaped structure. Based on the light curve parameters, we derive metallicities of the RRab variables and show that there is a very mild but statistically significant radial metallicity gradient. About 60% of the bulge RRab stars form two very close sequences on the period-amplitude (or Bailey) diagram, which we interpret as two major old bulge populations: A and B. Their metallicities likely differ. Population A is about four times less abundant than the slightly more metal-poor population B. Most of the remaining stars seem to represent other, even more metal-poor populations of the bulge. The presence of multiple old populations indicates that the Milky Way bulge was initially formed through mergers.


The Astrophysical Journal | 2015

Spitzer as a Microlens Parallax Satellite: Mass Measurement for the OGLE-2014-BLG-0124L Planet and its Host Star

A. Udalski; J. C. Yee; A. Gould; Sean J. Carey; W. Zhu; J. Skowron; S. Kozłowski; R. Poleski; P. Pietrukowicz; G. Pietrzyński; M. K. Szymański; P. Mróz; I. Soszyński; K. Ulaczyk; Ł. Wyrzykowski; C. Han; S. Calchi Novati; Richard W. Pogge

We combine Spitzer and ground-based observations to measure the microlens parallax vector π_E, and thus the mass and distance of OGLE-2014-BLG-0124L, making it the first microlensing planetary system with a space-based parallax measurement. The planet and star have masses of m ~ 0.5 M_(jup) and M ~ 0.7 M_☉ and are separated by a_⊥ ~ 3.1 AU in projection. The main source of uncertainty in all of these numbers (approximately 30%, 30%, and 20%) is the relatively poor measurement of the Einstein radius θ_E, rather than uncertainty in π_E, which is measured with 2.5% precision. This compares to 22% based on OGLE data alone, implying that the Spitzer data provide not only a substantial improvement in the precision of the π_E measurement, but also the first independent test of a ground-based π_E measurement.


The Astrophysical Journal | 2013

THE SECOND MULTIPLE-PLANET SYSTEM DISCOVERED BY MICROLENSING: OGLE-2012-BLG-0026Lb, c-A PAIR OF JOVIAN PLANETS BEYOND THE SNOW LINE

C. Han; A. Udalski; J.-Y. Choi; J. C. Yee; A. Gould; G. W. Christie; T. G. Tan; M. K. Szymański; M. Kubiak; I. Soszyński; G. Pietrzyński; R. Poleski; K. Ulaczyk; P. Pietrukowicz; S. Kozłowski; J. Skowron; Ł. Wyrzykowski; L. A. Almeida; V. Batista; D. L. DePoy; Subo Dong; J. Drummond; B. S. Gaudi; K.-H. Hwang; F. Jablonski; Y. K. Jung; C.-U. Lee; Jae-Rim Koo; J. McCormick; L. A. G. Monard

We report the discovery of a planetary system from observation of the high-magnification microlensing event OGLE-2012-BLG-0026. The lensing light curve exhibits a complex central perturbation with multiple features. We find that the perturbation was produced by two planets located near the Einstein ring of the planet host star. We identify four possible solutions resulting from the well-known close/wide degeneracy. By measuring both the lens parallax and the Einstein radius, we estimate the physical parameters of the planetary system. According to the best-fit model, the two planet masses are ~0.11 M J and 0.68 M J and they are orbiting a G-type main-sequence star with a mass ~0.82 M ☉. The projected separations of the individual planets are beyond the snow line in all four solutions, being ~3.8 AU and 4.6 AU in the best-fit solution. The deprojected separations are both individually larger and possibly reversed in order. This is the second multi-planet system with both planets beyond the snow line discovered by microlensing. This is the only such system (other than the solar system) with measured planet masses without sin i degeneracy. The planetary system is located at a distance 4.1 kpc from the Earth toward the Galactic center. It is very likely that extra light from stars other than the lensed star comes from the lens itself. If this is correct, it will be possible to obtain detailed information about the planet host star from follow-up observation.


Monthly Notices of the Royal Astronomical Society | 2011

The OGLE view of microlensing towards the Magellanic Clouds – IV. OGLE-III SMC data and final conclusions on MACHOs★

Lukasz Wyrzykowski; J. Skowron; S. Kozłowski; A. Udalski; M. K. Szymański; M. Kubiak; G. Pietrzyński; I. Soszyński; O. Szewczyk; K. Ulaczyk; R. Poleski; Patrick Tisserand

In this fourth part of the series presenting the Optical Gravitational Lensing Experiment (OGLE) microlensing studies of the dark matter halo compact objects (MACHOs), we describe results of the OGLE-III monitoring of the Small Magellanic Cloud (SMC). Three sound candidates for microlensing events were found and yielded the optical depth τSMC-OIII= 1.30 ± 1.01 × 10−7, consistent with the expected contribution from Galactic disc and SMC self-lensing. We report that event OGLE-SMC-03 is most likely a thick-disc lens candidate, the first of such type found towards the SMC. In this paper we also combined all OGLE Large Magellanic Cloud and SMC microlensing results in order to refine the conclusions on MACHOs. All but one of the OGLE events are most likely caused by the lensing by known populations of stars; therefore, we concluded that there is no need for introducing any special dark matter compact objects in order to explain the observed event rates. Potential black hole event indicates that similar lenses can contribute only about 2 per cent to the total mass of the halo, which is still in agreement with the expected number of such objects.


The Astrophysical Journal | 2012

A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335

C. J. Grier; Bradley M. Peterson; Richard W. Pogge; K. D. Denney; Misty C. Bentz; Paul Martini; S. G. Sergeev; Shai Kaspi; Ying Zu; C. S. Kochanek; Benjamin J. Shappee; K. Z. Stanek; C. Araya Salvo; Thomas G. Beatty; Jonathan C. Bird; D. J. Bord; G. A. Borman; Xiao Che; Chien-Ting J. Chen; Seth A. Cohen; Matthias Dietrich; V. T. Doroshenko; Yu. S. Efimov; N. Free; I. Ginsburg; C. B. Henderson; K. Horne; Ashley L. King; K. Mogren; M. Molina

We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He II {lambda}4686 broad emission line relative to the optical continuum to be 2.7 {+-} 0.6 days and the lag in the H{beta}{lambda}4861 broad emission line to be 13.9 {+-} 0.9 days. Combined with the line width, the He II lag yields a black hole mass M{sub BH} = (2.6 {+-} 0.8) Multiplication-Sign 10{sup 7} M{sub Sun }. This measurement is consistent with measurements made using the H{beta}{lambda}4861 line, suggesting that the He II emission originates in the same structure as H{beta}, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He II emission originates from gas in virial motion rather than outflow.


The Astrophysical Journal | 2015

First Space-based Microlens Parallax Measurement of an Isolated Star: Spitzer Observations of OGLE-2014-BLG-0939

J. C. Yee; A. Udalski; S. Calchi Novati; A. Gould; Sean J. Carey; R. Poleski; B. S. Gaudi; Richard W. Pogge; J. Skowron; S. Kozłowski; P. Mróz; P. Pietrukowicz; G. Pietrzyński; M. K. Szymański; I. Soszyński; K. Ulaczyk; Ł. Wyrzykowski

We present the first space-based microlens parallax measurement of an isolated star. From the striking differences in the lightcurve as seen from Earth and from Spitzer (~1 AU to the West), we infer a projected velocity v_helio,projected ~ 250 km/s, which strongly favors a lens in the Galactic Disk with mass M=0.23 +- 0.07 M_sun and distance D_L=3.1 +- 0.4 kpc. An ensemble of such measurements drawn from our ongoing program could be used to measure the single-lens mass function including dark objects, and also is necessary for measuring the Galactic distribution of planets since the ensemble reflects the underlying Galactic distribution of microlenses. We study the application of the many ideas to break the four-fold degeneracy first predicted by Refsdal 50 years ago. We find that this degeneracy is clearly broken, but by two unanticipated mechanisms.


Science | 2014

A terrestrial planet in a ~1-AU orbit around one member of a ∼15-AU binary

A. Gould; A. Udalski; I. G. Shin; I. Porritt; J. Skowron; C. Han; J. C. Yee; S. Kozłowski; J. Y. Choi; R. Poleski; Ł. Wyrzykowski; K. Ulaczyk; P. Pietrukowicz; P. Mróz; M. K. Szymański; M. Kubiak; I. Soszyński; G. Pietrzyński; B. S. Gaudi; G. W. Christie; J. Drummond; J. McCormick; T. Natusch; H. Ngan; T. G. Tan; M. D. Albrow; D. L. DePoy; K.-H. Hwang; Y. K. Jung; C.-U. Lee

Impolite planet ignores hosts partner Many known exoplanets (planets outside our own solar system) are hosted by binary systems that contain two stars. These planets normally circle around both of their stars. Using microlensing data taken with a worldwide network of telescopes, Gould et al. found a planet twice the mass of Earth that circles just one of a pair of stars. The same approach has the potential to uncover other similar star systems and help to illuminate some of the mysteries of planet formation. Science, this issue p. 46 Microlensing observations reveal an exoplanet twice the mass of Earth circling just one member of a binary system. Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth’s) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet’s temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.


The Astrophysical Journal | 2015

Spitzer as a microlens parallax satellite : mass and distance measurements of the binary lens system OGLE-2014-BLG-1050L

W. Zhu; A. Udalski; A. Gould; M. Dominik; V. Bozza; C. Han; J. C. Yee; S. Calchi Novati; C. A. Beichman; Sean J. Carey; R. Poleski; J. Skowron; S. Kozłowski; P. Mróz; P. Pietrukowicz; G. Pietrzyński; M. K. Szymański; I. Soszyński; K. Ulaczyk; Ł. Wyrzykowski; B. S. Gaudi; Richard W. Pogge; D. L. DePoy; Y. K. Jung; J.-Y. Choi; K.-H. Hwang; I.-G. Shin; H. Park; J. Jeong

We report the first mass and distance measurements of a caustic-crossing binary system OGLE-2014-BLG-1050 L using the space-based microlens parallax method. Spitzer captured the second caustic crossing of the event, which occurred ~10 days before that seen from Earth. Due to the coincidence that the source-lens relative motion was almost parallel to the direction of the binary-lens axis, the fourfold degeneracy, which was known before only to occur in single-lens events, persists in this case, leading to either a lower-mass (0.2 and 0.07 M_☉) binary at ~1.1 kpc or a higher-mass (0.9 and 0.35 M_☉) binary at ~3.5 kpc. However, the latter solution is strongly preferred for reasons including blending and lensing probability. OGLE-2014-BLG-1050 L demonstrates the power of microlens parallax in probing stellar and substellar binaries.

Collaboration


Dive into the J. Skowron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Mróz

University of Warsaw

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge