Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ł. Wyrzykowski is active.

Publication


Featured researches published by Ł. Wyrzykowski.


Nature | 2013

An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent.

Grzegorz Pietrzyński; Dariusz Graczyk; W. Gieren; Ian B. Thompson; B. Pilecki; A. Udalski; I. Soszyński; S. Kozłowski; Piotr Konorski; Ksenia Suchomska; G. Bono; P. G. Prada Moroni; Sandro Villanova; N. Nardetto; Fabio Bresolin; Rolf-Peter Kudritzki; Jesper Storm; A. Gallenne; R. Smolec; D. Minniti; M. Kubiak; M. K. Szymański; R. Poleski; Ł. Wyrzykowski; K. Ulaczyk; P. Pietrukowicz; Marek Górski; Paulina Karczmarek

In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately. The eclipsing-binary method was previously applied to the LMC, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.


Science | 2008

Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing

B. S. Gaudi; D. P. Bennett; A. Udalski; A. Gould; G. W. Christie; D. Maoz; Subo Dong; J. McCormick; M. K. Szymański; P. J. Tristram; S. Nikolaev; Bohdan Paczynski; M. Kubiak; G. Pietrzyński; I. Soszyński; O. Szewczyk; K. Ulaczyk; Ł. Wyrzykowski; D. L. DePoy; Cheongho Han; Shai Kaspi; C.-U. Lee; F. Mallia; T. Natusch; Richard W. Pogge; B.-G. Park; F. Abe; I. A. Bond; C. S. Botzler; A. Fukui

Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of ∼0.71 and ∼0.27 times the mass of Jupiter and orbital separations of ∼2.3 and ∼4.6 astronomical units orbiting a primary star of mass ∼0.50 solar mass at a distance of ∼1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.


The Astrophysical Journal | 2006

Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common

A. Gould; A. Udalski; Deokkeun An; D. P. Bennett; A.-Y. Zhou; Subo Dong; N. J. Rattenbury; B. S. Gaudi; P. C. M. Yock; I. A. Bond; G. W. Christie; K. Horne; Jay Anderson; K. Z. Stanek; D. L. DePoy; Cheongho Han; J. McCormick; B.-G. Park; Richard W. Pogge; Shawn Poindexter; I. Soszyński; M. K. Szymański; M. Kubiak; Grzegorz Pietrzyński; O. Szewczyk; Ł. Wyrzykowski; K. Ulaczyk; Bohdan Paczynski; D. M. Bramich; C. Snodgrass

We detect a Neptune mass ratio (q 8 ? 10-5) planetary companion to the lens star in the extremely high magnification (A ~ 800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M ~ 0.5 M?, implying a planet mass of ~13 M? and projected separation of ~2.7 AU. When intensely monitored over their peak, high-magnification events similar to OGLE-2005-BLG-169 have nearly complete sensitivity to Neptune mass ratio planets with projected separations of 0.6-1.6 Einstein radii, corresponding to 1.6-4.3 AU in the present case. Only two other such events were monitored well enough to detect Neptunes, and so this detection by itself suggests that Neptune mass ratio planets are common. Moreover, another Neptune was recently discovered at a similar distance from its parent star in a low-magnification event, which are more common but are individually much less sensitive to planets. Combining the two detections yields 90% upper and lower frequency limits f = 0.38 over just 0.4 decades of planet-star separation. In particular, f > 16% at 90% confidence. The parent star hosts no Jupiter-mass companions with projected separations within a factor 5 of that of the detected planet. The lens-source relative proper motion is ? ~ 7-10 mas yr-1, implying that if the lens is sufficiently bright, I 23.8, it will be detectable by the Hubble Space Telescope by 3 years after peak. This would permit a more precise estimate of the lens mass and distance and, so, the mass and projected separation of the planet. Analogs of OGLE-2005-BLG-169Lb orbiting nearby stars would be difficult to detect by other methods of planet detection, including radial velocities, transits, and astrometry.


The Astrophysical Journal | 2010

Quantifying Quasar Variability as Part of a General Approach to Classifying Continuously Varying Sources

S. Kozłowski; Christopher S. Kochanek; A. Udalski; Ł. Wyrzykowski; I. Soszyński; M. K. Szymański; M. Kubiak; G. Pietrzyński; O. Szewczyk; K. Ulaczyk; R. Poleski

Robust fast methods to classify variable light curves in large sky surveys are becoming increasingly important. While it is relatively straightforward to identify common periodic stars and particular transient events (supernovae, novae, microlensing events), there is no equivalent for non-periodic continuously varying sources (quasars, aperiodic stellar variability). In this paper, we present a fast method for modeling and classifying such sources. We demonstrate the method using ~86, 000 variable sources from the OGLE-II survey of the LMC and ~2700 mid-IR-selected quasar candidates from the OGLE-III survey of the LMC and SMC. We discuss the location of common variability classes in the parameter space of the model. In particular, we show that quasars occupy a distinct region of variability space, providing a simple quantitative approach to the variability selection of quasars.


Monthly Notices of the Royal Astronomical Society | 2009

Substructure revealed by RR Lyraes in SDSS Stripe 82

Laura L. Watkins; N. W. Evans; Vasily Belokurov; M. C. Smith; Paul C. Hewett; D. M. Bramich; G. Gilmore; M. J. Irwin; S. Vidrih; Ł. Wyrzykowski; Daniel B. Zucker

We present an analysis of the substructure revealed by RR Lyraes in Sloan Digital Sky Survey Stripe 82, which covers 2°5 in declination on the celestial equator over the right ascension range α = 20 h .7 to 3 h .3. We use the new public archive of light-motion curves in Stripe 82, published by Bramich et al. in 2008, to identify a set of high-quality RR Lyrae candidates. Period estimates are determined to high accuracy using a string-length method. A subset of 178 RR Lyraes with spectrally derived metallicities are employed to derive metallicity-period-amplitude relations, which are then used, together with archive magnitude data and light-curve Fourier decomposition, to estimate metallicities and hence distances for the entire sample. The RR Lyraes lie 5-115 kpc from the Galactic Centre, with distance estimates accurate to ∼8 per cent. The RR Lyraes are further divided into subsets of 316 RRab types and 91 RRc types based on their period, colour and metallicity. We fit a smooth density law to the distribution as a simple representation of the data. For Galactocentric radii 5-25 kpc the number density of RR Lyraes falls as r ―2,4 , but beyond 25 kpc, the number density falls much more steeply, as r ―4.5 . However, we stress that in practice the density distribution is not smooth, but dominated by clumps and substructure. Samples of 55 and 237 RR Lyraes associated with the Sagittarius Stream and the Hercules-Aquila Cloud, respectively, are identified. Hence, ∼70 per cent of the RR Lyraes in Stripe 82 belong to known substructure, and the sharp break in the density law reflects the fact that the dominant substructure in Stripe 82 - the Hercules-Aquila Cloud and the Sagittarius Stream -lie within 40 kpc. In fact, almost 60 per cent of all the RR Lyraes in Stripe 82 are associated with the Hercules-Aquila Cloud alone, which emphasizes the clouds pre-eminence. Additionally, evidence of a new and distant substructure - the Pisces Overdensity ― is found, consisting of 28 faint RRLyraes centred on Galactic coordinates (l ≈ 80°, b ≈ -55°), with distances of ∼80 kpc. The total stellar mass in the Pisces Overdensity is ∼10 4 M ⊙ and its metallicity is [Fe/H]∼ ―1.5.


Astronomy and Astrophysics | 2011

V1309 Scorpii: merger of a contact binary ,

R. Tylenda; M. Hajduk; T. Kamiński; A. Udalski; I. Soszyński; M. K. Szymański; M. Kubiak; G. Pietrzyński; R. Poleski; Ł. Wyrzykowski; K. Ulaczyk

Context. Stellar mergers are expected to take place in numerous circumstences in the evolution of stellar systems. In particular, they are considered as a plausible origin of stellar eruptions of the V838 Mon type. V 1309 Sco is the most recent eruption of this type in our Galaxy. The object was discovered in September 2008. Aims. Our aim is to investigate the nature of V 1309 Sco. Methods. V 1309 Sco has been photometrically observed in course of the OGLE project since August 2001. We analyse these observations in different ways. In particular, periodogram analyses were done to investigate the nature of the observed short-term variability of the progenitor. Results. We find that the progenitor of V 1309 Sco was a contact binary with an orbital period of ∼1.4 day. This period was decreasing with time. The light curve of the binary was also evolving, indicating that the system evolved towards its merger. The violent phase of the merger, marked by the systematic brightenning of the object, began in March 2008, i.e. half a year before the outburst discovery. We also investigate the observations of V 1309 Sco during the outburst and the decline and show that they can be fully accounted for within the merger hypothesis. Conclusions. For the first time in the literature we show from direct observations that contact binaries indeed end up by merging into a single object, as was suggested in numerous theoretical studies of these systems. Our study also shows that stellar mergers indeed result in eruptions of the V838 Mon type.


The Astrophysical Journal | 2009

MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET

Subo Dong; I. A. Bond; A. Gould; S. Kozłowski; N. Miyake; B. S. Gaudi; D. P. Bennett; F. Abe; A. C. Gilmore; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; K. Kamiya; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; Y. Muraki; M. Nagaya; K. Ohnishi; Teppei Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; Shuji Sato; L. Skuljan

We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A max = 628) in which the primary lens transited the source, resulting in a dramatic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus, the deviation from a single-lens fit is broad and relatively weak (approximately few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of , in accord with the large significance () of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M ? (assuming that it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M ? and thus a planet mass of ~0.5-1.3 M Jup. The separation and equilibrium temperature are ~5.3-9.7 AU (~0.6-1.1 AU) and ~34 K (~103 K) for the wide (close) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.


The Astrophysical Journal | 2006

Planetary detection efficiency of the magnification 3000 microlensing event OGLE-2004-BLG-343

Subo Dong; D. L. DePoy; B. S. Gaudi; A. Gould; C. Han; B.-G. Park; Richard W. Pogge; A. Udalski; O. Szewczyk; M. Kubiak; M. K. Szymański; G. Pietrzyński; I. Soszyński; Ł. Wyrzykowski; K. Żebruń

OGLE-2004-BLG-343 was a microlensing event with peak magnification Amax = 3000 ± 1100, by far the highest magnification event ever analyzed and hence potentially extremely sensitive to planets orbiting the lens star. Due to human error, intensive monitoring did not begin until 43 minutes after peak, at which point the magnification had fallen to A ~ 1200, still by far the highest ever observed. As the light curve does not show significant deviations due to a planet, we place upper limits on the presence of such planets by extending the method of Yoo et al. (2004b), which combines light-curve analysis with priors from a Galactic model of the source and lens populations, to take account of finite-source effects. This is the first event so analyzed for which finite-source effects are important, and hence we develop two new techniques for evaluating these effects. Somewhat surprisingly, we find that OGLE-2004-BLG-343 is no more sensitive to planets than two previously analyzed events with Amax ~ 100, despite the fact that it was observed at ~12 times higher magnification. However, we show that had the event been observed over its peak, it would have been sensitive to almost all Neptune-mass planets over a factor of 5 of projected separation and even would have had some sensitivity to Earth-mass planets. This shows that some microlensing events being detected in current experiments are sensitive to very low mass planets. We also give suggestions on how extremely high magnification events can be more promptly monitored in the future.


The Astrophysical Journal | 2010

Masses and Orbital Constraints for the OGLE-2006-BLG-109Lb,c Jupiter/Saturn Analog Planetary System

D. P. Bennett; Sun Hong Rhie; Sergei Nikolaev; B. S. Gaudi; A. Udalski; A. Gould; G. W. Christie; D. Maoz; Subo Dong; J. McCormick; M. K. Szymański; P. J. Tristram; Bruce A. Macintosh; K. H. Cook; M. Kubiak; G. Pietrzyński; I. Soszyński; O. Szewczyk; K. Ulaczyk; Ł. Wyrzykowski; D. L. DePoy; Cheongho Han; Shai Kaspi; C.-U. Lee; F. Mallia; T. Natusch; B.-G. Park; Richard W. Pogge; David Polishook; F. Abe

We present a new analysis of the Jupiter+Saturn analog system, OGLE-2006-BLG-109Lb,c, which was the first double planet system discovered with the gravitational microlensing method. This is the only multi-planet system discovered by any method with measured masses for the star and both planets. In addition to the signatures of two planets, this event also exhibits a microlensing parallax signature and finite source effects that provide a direct measure of the masses of the star and planets, and the expected brightness of the host star is confirmed by Keck AO imaging, yielding masses of , Mb = 231 ± 19 M ⊕, and Mc = 86 ± 7 M ⊕. The Saturn-analog planet in this system had a planetary light-curve deviation that lasted for 11 days, and as a result, the effects of the orbital motion are visible in the microlensing light curve. We find that four of the six orbital parameters are tightly constrained and that a fifth parameter, the orbital acceleration, is weakly constrained. No orbital information is available for the Jupiter-analog planet, but its presence helps to constrain the orbital motion of the Saturn-analog planet. Assuming co-planar orbits, we find an orbital eccentricity of and an orbital inclination of . The 95% confidence level lower limit on the inclination of i > 49° implies that this planetary system can be detected and studied via radial velocity measurements using a telescope of 30 m aperture.


The Astrophysical Journal | 2006

Microlensing optical depth toward the Galactic bulge using bright sources from OGLE-II

T. Sumi; P. R. Woźniak; A. Udalski; M. K. Szymański; M. Kubiak; G. Pietrzyński; I. Soszyński; K. Żebruń; O. Szewczyk; Ł. Wyrzykowski; Bohdan Paczynski

We present a measurement of the microlensing optical depth toward the Galactic bulge based on 4 years of the OGLE-II survey. We consider only bright sources in the extended red clump giant (RCG) region of the color-magnitude diagram, in 20 bulge fields covering ~5 deg2 between 0° < l < 3° and -4° < b < -2°. Using a sample of 32 events we find τ = 2.55 × 10-6 at (l, b) = (116, - 275). Taking into account the measured gradient along the Galactic latitude b, τ = [(4.48 ± 2.37) + (0.78 ± 0.84) × b] × 10-6, this value is consistent with previous measurements using RCG sources and recent theoretical predictions. We determine the microlensing parameters and select events using a model light curve that allows for flux blending. Photometric quality delivered by difference image analysis (DIA) combined with the 13 median seeing of the OGLE-II images are sufficient to constrain and reject the majority of strong blends. We find that ~38% of the OGLE-II events that appear to have RCG sources are actually due to much fainter stars blended with a bright companion. We show explicitly that model fits without blending result in similar τ estimates through partial cancellation of contributions from higher detection efficiency, underestimated timescales, and a larger number of selected events. The near cancellation of the optical depth bias and the fact that microlensing event selection based on models without blending discriminates against blends have been utilized by previous analyses based on RCG sources. The latter approach, however, leads to biased timescale distributions and event rates. Consequently, microlensing studies should carefully consider source confusion effects even for bright stars.

Collaboration


Dive into the Ł. Wyrzykowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge