Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Todd Blankenship is active.

Publication


Featured researches published by J. Todd Blankenship.


Seminars in Cell & Developmental Biology | 2008

Multicellular dynamics during epithelial elongation.

Jennifer A. Zallen; J. Todd Blankenship

The reorganization of multicellular populations to produce an elongated tissue structure is a conserved mechanism for shaping the body axis and several organ systems. In the Drosophila germband epithelium, this process is accompanied by the formation of a planar polarized network of junctional and cytoskeletal proteins in response to striped patterns of gene expression. Actomyosin cables and adherens junctions are dynamically remodeled during intercalation, providing the basis for polarized cell behavior. Quantitative analysis of cell behavior in living embryos reveals unexpected cell population dynamics that include the formation of multicellular rosette structures as well as local neighbor exchange.


Molecular Biology of the Cell | 2010

Phosphatidylinositol 4,5-bisphosphate Directs Spermatid Cell Polarity and Exocyst Localization in Drosophila

Lacramioara Fabian; Ho-Chun Wei; Janet Rollins; Tatsuhiko Noguchi; J. Todd Blankenship; Kishan Bellamkonda; Gordon Polevoy; Louis Gervais; Antoine Guichet; Margaret T. Fuller; Julie A. Brill

This study identifies phosphoinositides as key regulators of spermatid cell polarity. Polarization and elongation of spermatids in Drosophila are regulated through local synthesis of PIP2 by Sktl, which drives polarized localization of the exocyst complex to promote targeted membrane delivery and polarization of the elongating spermatid cysts.


PLOS Genetics | 2015

Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in Drosophila

Maria Grazia Giansanti; Timothy E. Vanderleest; Cayla E. Jewett; Stefano Sechi; Anna Frappaolo; Lacramioara Fabian; Carmen C. Robinett; Julie A. Brill; Dinah Loerke; Margaret T. Fuller; J. Todd Blankenship

Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression.


Development | 2016

Rab8 directs furrow ingression and membrane addition during epithelial formation in Drosophila melanogaster.

Lauren M. Mavor; Hui Miao; Zhongyuan Zuo; Ryan M. Holly; Yi Xie; Dinah Loerke; J. Todd Blankenship

One of the most fundamental changes in cell morphology is the ingression of a plasma membrane furrow. The Drosophila embryo undergoes several cycles of rapid furrow ingression during early development that culminate in the formation of an epithelial sheet. Previous studies have demonstrated the requirement for intracellular trafficking pathways in furrow ingression; however, the pathways that link compartmental behaviors with cortical furrow ingression events are unclear. Here, we show that Rab8 has striking dynamic behaviors in vivo. As furrows ingress, cytoplasmic Rab8 puncta are depleted and Rab8 accumulates at the plasma membrane in a location that coincides with known regions of directed membrane addition. We additionally use CRISPR/Cas9 technology to N-terminally tag Rab8, which is then used to address endogenous localization and function. Endogenous Rab8 displays partial coincidence with Rab11 and the Golgi, and this colocalization is enriched during the fast phase of cellularization. When Rab8 function is disrupted, furrow formation in the early embryo is completely abolished. We also demonstrate that Rab8 behaviors require the function of the exocyst complex subunit Sec5 as well as the recycling endosome protein Rab11. Active, GTP-locked Rab8 is primarily associated with dynamic membrane compartments and the plasma membrane, whereas GDP-locked Rab8 forms large cytoplasmic aggregates. These studies suggest a model in which active Rab8 populations direct furrow ingression by guiding the targeted delivery of cytoplasmic membrane stores to the cell surface through interactions with the exocyst tethering complex. Summary: During Drosophila cellularization, the GTPase Rab8 guides the targeting of cytoplasmic membrane stores to the cell surface through interactions with the exocyst complex.


Nature Communications | 2017

Planar polarized Rab35 functions as an oscillatory ratchet during cell intercalation in the Drosophila epithelium

Cayla E. Jewett; Timothy E. Vanderleest; Hui Miao; Yi Xie; Roopa Madhu; Dinah Loerke; J. Todd Blankenship

The coordination between membrane trafficking and actomyosin networks is essential to the regulation of cell and tissue shape. Here, we examine Rab protein distributions during Drosophila epithelial tissue remodeling and show that Rab35 is dynamically planar polarized. Rab35 compartments are enriched at contractile interfaces of intercalating cells and provide the first evidence of interfacial monopolarity. When Rab35 function is disrupted, apical area oscillations still occur and contractile steps are observed. However, contractions are followed by reversals and interfaces fail to shorten, demonstrating that Rab35 functions as a ratchet ensuring unidirectional movement. Although actomyosin forces have been thought to drive interface contraction, initiation of Rab35 compartments does not require Myosin II function. However, Rab35 compartments do not terminate and continue to grow into large elongated structures following actomyosin disruption. Finally, Rab35 represents a common contractile cell-shaping mechanism, as mesoderm invagination fails in Rab35 compromised embryos and Rab35 localizes to constricting surfaces.Various stages of tissue morphogenesis involve the contraction of epithelial surfaces. Here, the authors identify the Rab GTPase Rab35 as an essential component of this contractile process, which functions as a membrane ratchet to ensure unidirectional movement of intercalating cells.


PLOS ONE | 2016

GW-Bodies and P-Bodies Constitute Two Separate Pools of Sequestered Non-Translating RNAs.

Prajal H. Patel; Scott A. Barbee; J. Todd Blankenship

Non-translating RNAs that have undergone active translational repression are culled from the cytoplasm into P-bodies for decapping-dependent decay or for sequestration. Organisms that use microRNA-mediated RNA silencing have an additional pathway to remove RNAs from active translation. Consequently, proteins that govern microRNA-mediated silencing, such as GW182/Gw and AGO1, are often associated with the P-bodies of higher eukaryotic organisms. Due to the presence of Gw, these structures have been referred to as GW-bodies. However, several reports have indicated that GW-bodies have different dynamics to P-bodies. Here, we use live imaging to examine GW-body and P-body dynamics in the early Drosophila melanogaster embryo. While P-bodies are present throughout early embryonic development, cytoplasmic GW-bodies only form in significant numbers at the midblastula transition. Unlike P-bodies, which are predominantly cytoplasmic, GW-bodies are present in both nuclei and the cytoplasm. RNA decapping factors such as DCP1, Me31B, and Hpat are not associated with GW-bodies, indicating that P-bodies and GW-bodies are distinct structures. Furthermore, known Gw interactors such as AGO1 and the CCR4-NOT deadenylation complex, which have been shown to be important for Gw function, are also not present in GW-bodies. Use of translational inhibitors puromycin and cycloheximide, which respectively increase or decrease cellular pools of non-translating RNAs, alter GW-body size, underscoring that GW-bodies are composed of non-translating RNAs. Taken together, these data indicate that active translational silencing most likely does not occur in GW-bodies. Instead GW-bodies most likely function as repositories for translationally silenced RNAs. Finally, inhibition of zygotic gene transcription is unable to block the formation of either P-bodies or GW-bodies in the early embryo, suggesting that these structures are composed of maternal RNAs.


eLife | 2018

Vertex sliding drives intercalation by radial coupling of adhesion and actomyosin networks during Drosophila germband extension

Timothy E. Vanderleest; Celia M Smits; Yi Xie; Cayla E. Jewett; J. Todd Blankenship; Dinah Loerke

Oriented cell intercalation is an essential developmental process that shapes tissue morphologies through the directional insertion of cells between their neighbors. Previous research has focused on properties of cell–cell interfaces, while the function of tricellular vertices has remained unaddressed. Here, we identify a highly novel mechanism in which vertices demonstrate independent sliding behaviors along cell peripheries to produce the topological deformations responsible for intercalation. Through systematic analysis, we find that the motion of vertices connected by contracting interfaces is not physically coupled, but instead possess strong radial coupling. E-cadherin and Myosin II exist in previously unstudied populations at cell vertices and undergo oscillatory cycles of accumulation and dispersion that are coordinated with changes in cell area. Additionally, peak enrichment of vertex E-cadherin/Myosin II coincides with interface length stabilization. Our results suggest a model in which asymmetric radial force balance directs the progressive, ratcheted motion of individual vertices to drive intercalation.


Traffic | 2018

Membrane trafficking in morphogenesis and planar polarity

Yi Xie; Hui Miao; J. Todd Blankenship

Our understanding of how membrane trafficking pathways function to direct morphogenetic movements and the planar polarization of developing tissues is a new and emerging field. While a central focus of developmental biology has been on how protein asymmetries and cytoskeletal force generation direct cell shaping, the role of membrane trafficking in these processes has been less clear. Here, we review recent advances in Drosophila and vertebrate systems in our understanding of how trafficking events are coordinated with planar cytoskeletal function to drive lasting changes in cell and tissue topologies. We additionally explore the function of trafficking pathways in guiding the complex interactions that initiate and maintain core PCP (planar cell polarity) asymmetries and drive the generation of systematically oriented cellular projections during development.


PLOS Genetics | 2018

Differentially-dimensioned furrow formation by zygotic gene expression and the MBT

Yi Xie; J. Todd Blankenship

Despite extensive work on the mechanisms that generate plasma membrane furrows, understanding how cells are able to dynamically regulate furrow dimensions is an unresolved question. Here, we present an in-depth characterization of furrow behaviors and their regulation in vivo during early Drosophila morphogenesis. We show that the deepening in furrow dimensions with successive nuclear cycles is largely due to the introduction of a new, rapid ingression phase (Ingression II). Blocking the midblastula transition (MBT) by suppressing zygotic transcription through pharmacological or genetic means causes the absence of Ingression II, and consequently reduces furrow dimensions. The analysis of compound chromosomes that produce chromosomal aneuploidies suggests that multiple loci on the X, II, and III chromosomes contribute to the production of differentially-dimensioned furrows, and we track the X-chromosomal contribution to furrow lengthening to the nullo gene product. We further show that checkpoint proteins are required for furrow lengthening; however, mitotic phases of the cell cycle are not strictly deterministic for furrow dimensions, as a decoupling of mitotic phases with periods of active ingression occurs as syncytial furrow cycles progress. Finally, we examined the turnover of maternal gene products and find that this is a minor contributor to the developmental regulation of furrow morphologies. Our results suggest that cellularization dynamics during cycle 14 are a continuation of dynamics established during the syncytial cycles and provide a more nuanced view of developmental- and MBT-driven morphogenesis.


Developmental Cell | 2006

Multicellular Rosette Formation Links Planar Cell Polarity to Tissue Morphogenesis

J. Todd Blankenship; Stephanie T. Backovic; Justina Sanny; Ori Weitz; Jennifer A. Zallen

Collaboration


Dive into the J. Todd Blankenship's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Xie

University of Denver

View shared research outputs
Top Co-Authors

Avatar

Hui Miao

University of Denver

View shared research outputs
Top Co-Authors

Avatar

Jennifer A. Zallen

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhongyuan Zuo

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge