Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. W. Hair is active.

Publication


Featured researches published by J. W. Hair.


Journal of Geophysical Research | 2008

Validation of Aura Microwave Limb Sounder stratospheric ozone measurements

L. Froidevaux; Yibo Jiang; Alyn Lambert; Nathaniel J. Livesey; William G. Read; J. W. Waters; Edward V. Browell; J. W. Hair; M. Avery; T. J. McGee; Laurence Twigg; G. K. Sumnicht; K. W. Jucks; J. J. Margitan; B. Sen; R. A. Stachnik; G. C. Toon; Peter F. Bernath; C. D. Boone; Kaley A. Walker; Mark J. Filipiak; R. S. Harwood; R. Fuller; G. L. Manney; Michael J. Schwartz; W. H. Daffer; Brian J. Drouin; R. E. Cofield; D. T. Cuddy; R. F. Jarnot

[1] The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided essentially daily global measurements of ozone (O3) profiles from the upper troposphere to the upper mesosphere since August of 2004. This paper focuses on validation of the MLS stratospheric standard ozone product and its uncertainties, as obtained from the 240 GHz radiometer measurements, with a few results concerning mesospheric ozone. We compare average differences and scatter from matched MLS version 2.2 profiles and coincident ozone profiles from other satellite instruments, as well as from aircraft lidar measurements taken during Aura Validation Experiment (AVE) campaigns. Ozone comparisons are also made between MLS and balloon-borne remote and in situ sensors. We provide a detailed characterization of random and systematic uncertainties for MLS ozone. We typically find better agreement in the comparisons using MLS version 2.2 ozone than the version 1.5 data. The agreement and the MLS uncertainty estimates in the stratosphere are often of the order of 5%, with values closer to 10% (and occasionally 20%) at the lowest stratospheric altitudes, where small positive MLS biases can be found. There is very good agreement in the latitudinal distributions obtained from MLS and from coincident profiles from other satellite instruments, as well as from aircraft lidar data along the MLS track.


Journal of Geophysical Research | 2007

Evaluation of the MOCAGE chemistry transport model during the ICARTT/ITOP experiment

N. Bousserez; J. L. Attié; V.-H. Peuch; M. Michou; G. G. Pfister; David P. Edwards; Louisa Kent Emmons; Céline Mari; B. Barret; S. R. Arnold; A. Heckel; Andreas Richter; Hans Schlager; Alastair C. Lewis; M. Avery; G. W. Sachse; Edward V. Browell; J. W. Hair

Intercontinental Transport of Ozone and Precursors (ITOP), part of International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), was a large experimental campaign designed to improve our understanding of the chemical transformations within plumes during long-range transport (LRT) of pollution from North America to Europe. This campaign took place in July and August 2004, when a strong fire season occurred in North America. Burning by-products were transported over large distances, sometimes reaching Europe. A chemical transport model, Modelisation de la Chimie Atmospherique Grande Echelle (MOCAGE), with a high grid resolution (0.5° × 0.5°) over the North Atlantic area and a daily inventory of biomass burning emissions over the United States, has been used to simulate the period. By comparing our results with available aircraft in situ measurements and satellite data (MOPITT CO and SCIAMACHY NO2), we show that MOCAGE is capable of representing the main characteristics of the tropospheric ozone-NOx-hydrocarbon chemistry during the ITOP experiment. In particular, high resolution allows the accurate representation of the pathway of exported pollution over the Atlantic, where plumes were transported preferentially at 6 km altitude. The model overestimates OH mixing ratios up to a factor of 2 in the lower troposphere, which results in a global overestimation of hydrocarbons oxidation by-products (PAN and ketones) and an excess of O3 (30–50 ppbv) in the planetary boundary layer (PBL) over the continental United States. Sensitivity study revealed that lightning NO emissions contributed significantly to the NOx budget in the upper troposphere of northeast America during the summer 2004.


Geophysical Research Letters | 2015

Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion

Pablo E. Saide; David A. Peterson; Arlindo da Silva; Bruce E. Anderson; Luke D. Ziemba; Glenn S. Diskin; Glen Sachse; J. W. Hair; Carolyn Butler; Marta A. Fenn; Jose L. Jimenez; Pedro Campuzano-Jost; A. E. Perring; Joshua P. Schwarz; Milos Z. Markovic; P. B. Russell; J. Redemann; Yohei Shinozuka; David G. Streets; Fang Yan; Jack E. Dibb; Robert J. Yokelson; O. Brian Toon; Edward J. Hyer; Gregory R. Carmichael

We couple airborne, ground-based, and satellite observations; conduct regional simulations; and develop and apply an inversion technique to constrain hourly smoke emissions from the Rim Fire, the third largest observed in California, USA. Emissions constrained with multiplatform data show notable nocturnal enhancements (sometimes over a factor of 20), correlate better with daily burned area data, and are a factor of 2–4 higher than a priori estimates, highlighting the need for improved characterization of diurnal profiles and day-to-day variability when modeling extreme fires. Constraining only with satellite data results in smaller enhancements mainly due to missing retrievals near the emissions source, suggesting that top-down emission estimates for these events could be underestimated and a multiplatform approach is required to resolve them. Predictions driven by emissions constrained with multiplatform data present significant variations in downwind air quality and in aerosol feedback on meteorology, emphasizing the need for improved emissions estimates during exceptional events.


Journal of Climate | 2017

The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation

C. A. Randles; A. M. da Silva; Virginie Buchard; Peter R. Colarco; Anton Darmenov; R. C. Govindaraju; A. Smirnov; Brent N. Holben; Richard A. Ferrare; J. W. Hair; Yohei Shinozuka; C. J. Flynn

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASAs previous satellite era (1980 - onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations from ground, aircraft, and shipborne instruments. We demonstrate the positive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.


Journal of Geophysical Research | 2011

In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC4

Simon A. Carn; Karl D. Froyd; Bruce E. Anderson; Paul O. Wennberg; John D. Crounse; K. M. Spencer; Jack E. Dibb; N. Krotkov; Edward V. Browell; J. W. Hair; Glenn S. Diskin; G. W. Sachse; S. A. Vay

A NASA DC-8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC^4) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC^4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO_2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO_2 measurements. Elevated concentrations of SO_2, sulfate aerosol, and particles were measured by DC-8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ~2 h at Huila to ~22–48 h downwind of Ecuador. The plumes contained sulfate-rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In-plume O_3 concentrations were ~70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O_3 depletion via reactive halogen chemistry. The TC^4 data record rapid cloud processing of the Huila volcanic plume involving aqueous-phase oxidation of SO_2 by H_2O_2, but overall the data suggest average in-plume SO_2 to sulfate conversion rates of ~1%–2% h^(−1). SO_2 column amounts measured in the Tungurahua plume (~0.1–0.2 Dobson units) are commensurate with average SO_2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC^4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacity.


Journal of Climate | 2017

The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies

Virginie Buchard; C. A. Randles; A. M. da Silva; Anton Darmenov; Peter R. Colarco; R. C. Govindaraju; Richard A. Ferrare; J. W. Hair; A. J. Beyersdorf; Luke D. Ziemba; H. Yu

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is NASAs latest reanalysis for the satellite era (1980 onward) using the Goddard Earth Observing System, version 5 (GEOS-5), Earth system model. MERRA-2 provides several improvements over its predecessor (MERRA-1), including aerosol assimilation for the entire period. MERRA-2 assimilates bias-corrected aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer and the Advanced Very High Resolution Radiometer instruments. Additionally, MERRA-2 assimilates (non bias corrected) AOD from the Multiangle Imaging SpectroRadiometer over bright surfaces and AOD from Aerosol Robotic Network sunphotometer stations. This paper, the second of a pair, summarizes the efforts to assess the quality of the MERRA-2 aerosol products. First, MERRA-2 aerosols are evaluated using independent observations. It is shown that the MERRA-2 absorption aerosol optical depth (AAOD) and ultraviolet aerosol index (AI) compare well with Ozone Monitoring Instrument observations. Next, aerosol vertical structure and surface fine particulate matter (PM2.5) are evaluated using available satellite, aircraft, and ground-based observations. While MERRA-2 generally compares well to these observations, the assimilation cannot correct for all deficiencies in the model (e.g., missing emissions). Such deficiencies can explain many of the biases with observations. Finally, a focus is placed on several major aerosol events to illustrate successes and weaknesses of the AOD assimilation: the Mount Pinatubo eruption, a Saharan dust transport episode, the California Rim Fire, and an extreme pollution event over China. The article concludes with a summary that points to best practices for using the MERRA-2 aerosol reanalysis in future studies.


Journal of Geophysical Research | 2016

Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

Heidi Huntrieser; Michael Lichtenstern; Monika Scheibe; H. Aufmhoff; Hans Schlager; Tomáš Púčik; Andreas Minikin; Bernadett Weinzierl; K. Heimerl; I. B. Pollack; J. Peischl; T. B. Ryerson; Andrew J. Weinheimer; Shawn B. Honomichl; B. A. Ridley; M. I. Biggerstaff; Daniel P. Betten; J. W. Hair; Carolyn Butler; Michael J. Schwartz; M. C. Barth

During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum fur Luft- und Raumfahrt (DLR)-Falcon in situ measurements (CO, O3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements.


Proceedings of SPIE | 2012

Tilted pressure-tuned field-widened Michelson interferometer for high spectral resolution lidar

Dong Liu; Chris A. Hostetler; Ian Miller; Anthony L. Cook; Richard J. Hare; D. B. Harper; J. W. Hair

High spectral resolution lidars (HSRLs) designed for aerosol and cloud remote sensing are increasingly being deployed on aircraft and called for on future space-based missions. The HSRL technique relies on spectral discrimination of the atmospheric backscatter signals to enable independent, unambiguous retrieval of aerosol extinction and backscatter. NASA Langley Research Center is developing a tilted pressure-tuned field-widened Michelson interferometer (FWMI) to achieve the spectral discrimination for an HSRL system. The FWMI consists of a cubic beam splitter, a solid glass arm, and a sealed air arm. The spacer that connects the air arm mirror to the main part of the interferometer is designed to minimize thermal sensitivity. The pressure of the sealed air-arm air can be accurately controlled such that the frequency of maximum interference can be tuned with great precision to the transmitted laser wavelength. In this paper, the principle of the tilted pressure-tuned FWMI for HSRL is presented. The pressure tuning rate, the tilted angle requirement and challenges in building the real instrument are discussed.


Science of The Total Environment | 2018

Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data

Kirk R. Baker; Matthew Woody; L. Valin; J. Szykman; Emma L. Yates; Laura T. Iraci; H.D. Choi; A.J. Soja; S.N. Koplitz; Luxi Zhou; Pedro Campuzano-Jost; Jose L. Jimenez; J. W. Hair

The Rim Fire was one of the largest wildfires in California history, burning over 250,000 acres during August and September 2013 affecting air quality locally and regionally in the western U.S. Routine surface monitors, remotely sensed data, and aircraft based measurements were used to assess how well the Community Multiscale Air Quality (CMAQ) photochemical grid model applied at 4 and 12 km resolution represented regional plume transport and chemical evolution during this extreme wildland fire episode. Impacts were generally similar at both grid resolutions although notable differences were seen in some secondary pollutants (e.g., formaldehyde and peroxyacyl nitrate) near the Rim fire. The modeling system does well at capturing near-fire to regional scale smoke plume transport compared to remotely sensed aerosol optical depth (AOD) and aircraft transect measurements. Plume rise for the Rim fire was well characterized as the modeled plume top was consistent with remotely sensed data and the altitude of aircraft measurements, which were typically made at the top edge of the plume. Aircraft-based lidar suggests O3 downwind in the Rim fire plume was vertically stratified and tended to be higher at the plume top, while CMAQ estimated a more uniformly mixed column of O3. Predicted wildfire ozone (O3) was overestimated both at the plume top and at nearby rural and urban surface monitors. Photolysis rates were well characterized by the model compared with aircraft measurements meaning aerosol attenuation was reasonably estimated and unlikely contributing to O3 overestimates at the top of the plume. Organic carbon was underestimated close to the Rim fire compared to aircraft data, but was consistent with nearby surface measurements. Periods of elevated surface PM2.5 at rural monitors near the Rim fire were not usually coincident with elevated O3.


Proceedings of SPIE | 2011

Modeling of a tilted pressure-tuned field-widened Michelson interferometer for application in high spectral resolution lidar

Dong Liu; Chris A. Hostetler; Ian Miller; Anthony L. Cook; J. W. Hair

High spectral resolution lidars (HSRLs) designed for aerosol and cloud remote sensing are increasingly being deployed on aircraft and called for on future space-based missions. The HSRL technique relies on spectral discrimination of the atmospheric backscatter signals to enable independent, unambiguous retrieval of aerosol extinction and backscatter. A compact, monolithic field-widened Michelson interferometer is being developed as the spectral discrimination filter for an HSRL system at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid glass arm, and an air arm. The spacer that connects the air arm mirror to the main part of the interferometer is designed to optimize thermal compensation such that the frequency of maximum interference can be tuned with great precision to the transmitted laser wavelength. In this paper, a comprehensive radiometric model for the field-widened Michelson interferometeric spectral filter is presented. The model incorporates the angular distribution and finite cross sectional area of the light source, reflectance of all surfaces, loss of absorption, and lack of parallelism between the airarm and solid arm, etc. The model can be used to assess the performance of the interferometer and thus it is a useful tool to evaluate performance budgets and to set optical specifications for new designs of the same basic interferometer type.

Collaboration


Dive into the J. W. Hair's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. R. Rogers

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Weinheimer

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack E. Dibb

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. B. Harper

Langley Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge