Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jaana Vuosku is active.

Publication


Featured researches published by Jaana Vuosku.


Plant Physiology | 2006

Consistency of Polyamine Profiles and Expression of Arginine Decarboxylase in Mitosis during Zygotic Embryogenesis of Scots Pine

Jaana Vuosku; Anne Jokela; Esa Läärä; Mira Sääskilahti; Riina Muilu; Suvi Sutela; Teresa Altabella; Tytti Sarjala; Hely Häggman

In this study, we show that both arginine decarboxylase (ADC) protein and mRNA transcript are present at different phases of mitosis in Scots pine (Pinus sylvestris) zygotic embryogenesis. We also examined the consistency of polyamine (PA) profiles with the effective temperature sum, the latter indicating the developmental stage of the embryos. PA metabolism was analyzed by fitting statistical regression models to the data of free and soluble conjugated PAs, to the enzyme activities of ADC and ornithine decarboxylase (ODC), as well as to the gene expression of ADC. According to the fitted models, PAs typically had the tendency to increase at the early stages but decrease at the late stages of embryogenesis. Only the free putrescine fraction remained stable during embryo development. The PA biosynthesis strongly preferred the ADC pathway. Both ADC gene expression and ADC enzyme activity were substantially higher than putative ODC gene expression or ODC enzyme activity, respectively. ADC gene expression and enzyme activity increased during embryogenesis, which suggests the involvement of transcriptional regulation in the expression of ADC. Both ADC mRNA and ADC protein localized in dividing cells of embryo meristems and more specifically within the mitotic spindle apparatus and close to the chromosomes, respectively. The results suggest the essential role of ADC in the mitosis of plant cells.


Journal of Experimental Botany | 2009

One tissue, two fates: different roles of megagametophyte cells during Scots pine embryogenesis

Jaana Vuosku; Tytti Sarjala; Anne Jokela; Suvi Sutela; Mira Sääskilahti; Marja Suorsa; Esa Läärä; Hely Häggman

In the Scots pine (Pinus sylvestris L.) seed, embryos grow and develop within the corrosion cavity of the megagametophyte, a maternally derived haploid tissue, which houses the majority of the storage reserves of the seed. In the present study, histochemical methods and quantification of the expression levels of the programmed cell death (PCD) and DNA repair processes related genes (MCA, TAT-D, RAD51, KU80, and LIG) were used to investigate the physiological events occurring in the megagametophyte tissue during embryo development. It was found that the megagametophyte was viable from the early phases of embryo development until the early germination of mature seeds. However, the megagametophyte cells in the narrow embryo surrounding region (ESR) were destroyed by cell death with morphologically necrotic features. Their cell wall, plasma membrane, and nuclear envelope broke down with the release of cell debris and nucleic acids into the corrosion cavity. The occurrence of necrotic-like cell death in gymnosperm embryogenesis provides a favourable model for the study of developmental cell death with necrotic-like morphology and suggests that the mechanism underlying necrotic cell death is evolutionary conserved.


Tree Physiology | 2012

Polyamine metabolism during exponential growth transition in Scots pine embryogenic cell culture

Jaana Vuosku; Marja Suorsa; Maria Ruottinen; Suvi Sutela; Riina Muilu-Mäkelä; Riitta Julkunen-Tiitto; Tytti Sarjala; Peter Neubauer; Hely Häggman

Polyamine (PA) metabolism was studied in liquid cultures of Scots pine (Pinus sylvestris L.) embryogenic cells. The focus of the study was on the metabolic changes at the interphase between the initial lag phase and the exponential growth phase. PA concentrations fluctuated in the liquid cultures as follows. Putrescine (Put) concentrations increased, whereas spermidine (Spd) concentrations decreased in both free and soluble conjugated PA fractions. The concentrations of free and soluble conjugated spermine (Spm) remained low, and small amounts of excreted PAs were also found in the culture medium. The minor production of secondary metabolites reflected the undifferentiated stage of the embryogenic cell culture. Put was produced via the arginine decarboxylase (ADC) pathway. Futhermore, the gene expression data suggested that the accumulation of Put was caused neither by an increase in Put biosynthesis nor by a decrease in Put catabolism, but resulted mainly from the decrease in the biosynthesis of Spd and Spm. Put seemed to play an important role in cell proliferation in Scots pine embryogenic cells, but the low pH of the culture medium could also, at least partially, be the reason for the accumulation of endogenous Put. High Spd concentrations at the initiation of the culture, when cells were exposed to stress and cell death, suggested that Spd may act not only as a protector against stress but also as a growth suppressor, when proliferative growth is not promoted. All in all, Scots pine embryogenic cell culture was proved to be a favourable experimental platform to study PA metabolism and, furthermore, the developed system may also be beneficial in experiments where, e.g., the effect of specific stressors on PA metabolism is addressed.


BMC Plant Biology | 2009

Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch.

Suvi Sutela; Karoliina Niemi; Jaanika Edesi; Tapio Laakso; Pekka Saranpää; Jaana Vuosku; Riina Mäkelä; Heidi Tiimonen; Vincent L. Chiang; Janne J. Koskimäki; Marja Suorsa; Riitta Julkunen-Tiitto; Hely Häggman

BackgroundThe monolignol biosynthetic pathway interconnects with the biosynthesis of other secondary phenolic metabolites, such as cinnamic acid derivatives, flavonoids and condensed tannins. The objective of this study is to evaluate whether genetic modification of the monolignol pathway in silver birch (Betula pendula Roth.) would alter the metabolism of these phenolic compounds and how such alterations, if exist, would affect the ectomycorrhizal symbiosis.ResultsSilver birch lines expressing quaking aspen (Populus tremuloides L.) caffeate/5-hydroxyferulate O-methyltransferase (PtCOMT) under the 35S cauliflower mosaic virus (CaMV) promoter showed a reduction in the relative expression of a putative silver birch COMT (BpCOMT) gene and, consequently, a decrease in the lignin syringyl/guaiacyl composition ratio. Alterations were also detected in concentrations of certain phenolic compounds. All PtCOMT silver birch lines produced normal ectomycorrhizas with the ectomycorrhizal fungus Paxillus involutus (Batsch: Fr.), and the formation of symbiosis enhanced the growth of the transgenic plants.ConclusionThe down-regulation of BpCOMT in the 35S-PtCOMT lines caused a reduction in the syringyl/guaiacyl ratio of lignin, but no significant effect was seen in the composition or quantity of phenolic compounds that would have been caused by the expression of PtCOMT under the 35S or UbB1 promoter. Moreover, the detected alterations in the composition of lignin and secondary phenolic compounds had no effect on the interaction between silver birch and P. involutus.


Molecular Biotechnology | 2004

Does extraction of DNA and RNA by magnetic fishing work for diverse plant species

Jaana Vuosku; Laura Jaakola; Soile Jokipii; Katja Karppinen; Terttu Kämäräinen; Veli-Pekka Pelkonen; Anne Jokela; Tytti Sarjala; Anja Hohtola; Hely Häggman

An automated nucleic acid extraction procedure with magnetic particles originally designed for isolation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from animal tissues was tested for plant material. We isolated genomic DNA and total RNA from taxonomically diverse plant species representing conifers (Scots pine), broad-leaved trees (silver birch and hybrid aspen), dwarf shrubs (bilberry), and both monocotyledonous (regal lily) and dicotyledonous (Saint John’s wort, round-leaved sundew, and tobacco) herbaceous plants. Buffers developed for DNA extraction were successfully used in addition to manufacturer’s extraction kits. The quality of RNA was appropriate for many applications, but the quality of DNA was not always sufficient for polymerase chain reaction (PCR) amplification. However, we could strikingly improve the quality by eliminating the adherent compounds during the extraction or later in the PCR phase. Our results show that the use of the procedure could be extended to diverse plant species. This procedure is especially suitable for small sample sizes and for simultaneous processing of many samples enabling large-scale plant applications in population genetics, or in the screening of putative transgenic plants.


Tree Physiology | 2016

Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis

Heikki M. Salo; Tytti Sarjala; Anne Jokela; Hely Häggman; Jaana Vuosku

Somatic embryogenesis (SE) is one of the methods with the highest potential for the vegetative propagation of commercially important coniferous species. However, many conifers, including Scots pine (Pinus sylvestris L.), are recalcitrant to SE and a better understanding of the mechanisms behind the SE process is needed. In Scots pine SE cultures, embryo production is commonly induced by the removal of auxin, addition of abscisic acid (ABA) and the desiccation of cell masses by polyethylene glycol (PEG). In the present study, we focus on the possible link between the induction of somatic embryo formation and cellular stress responses such as hydrogen peroxide protection, DNA repair, changes in polyamine (PA) metabolism and autophagy. Cellular PA contents and the expression of the PA metabolism genes arginine decarboxylase (ADC), spermidine synthase (SPDS), thermospermine synthase (ACL5) and diamine oxidase (DAO) were analyzed, as well as the expression of catalase (CAT), DNA repair genes (RAD51, KU80) and autophagy-related genes (ATG5, ATG8) throughout the induction of somatic embryo formation in Scots pine SE cultures. Among the embryo-producing SE lines, the expression of ADC, SPDS, ACL5, DAO, CAT, RAD51, KU80 and ATG8 showed consistent profiles. Furthermore, the overall low expression of the stress-related genes suggests that cells in those SE lines were not stressed but recognized the ABA+PEG treatment as a signal to trigger the embryogenic pathway. In those SE lines that were unable to produce embryos, cells seemed to experience the ABA+PEG treatment mostly as osmotic stress and activated a wide range of stress defense mechanisms. Altogether, our results suggest that the direction to the embryogenic pathway is connected with cellular stress responses in Scots pine SE cultures. Thus, the manipulation of stress response pathways may provide a way to enhance somatic embryo production in recalcitrant Scots pine SE lines.


PLOS ONE | 2016

The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

Françoise Martz; Jaana Vuosku; Anu Ovaskainen; Sari Stark; Pasi Rautio

At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.


BMC Plant Biology | 2015

Expression of catalase and retinoblastoma-related protein genes associates with cell death processes in Scots pine zygotic embryogenesis

Jaana Vuosku; Suvi Sutela; Johanna Kestilä; Anne Jokela; Tytti Sarjala; Hely Häggman

BackgroundThe cell cycle and cellular oxidative stress responses are tightly controlled for proper growth and development of Scots pine (Pinus sylvestris L.) seed. Programmed cell death (PCD) is an integral part of the embryogenesis during which megagametophyte cells in the embryo surrounding region (ESR) and cells in the nucellar layers face death. In the present study, we show both the tissue and developmental stage specific expression of the genes encoding the autophagy related ATG5, catalase (CAT), and retinoblastoma related protein (RBR) as well as the connection between the gene expressions and cell death programs.ResultsWe found strong CAT expression in the cells of the developing embryo throughout the embryogenesis as well as in the cells of the megagametophyte and the nucellar layers at the early embryogeny. The CAT expression was found to overlap with both the ATG5 expression and hydrogen peroxide localization. At the late embryogeny, CAT expression diminished in the dying cells of the nucellar layers as well as in megagametophyte cells, showing the first signs of incipient cell death. Accumulation of starch and minor RBR expression were characteristic of megagametophyte cells in the ESR, whereas strong RBR expression was found in the cells of the nucellar layers at the late embryogeny.ConclusionsOur results suggest that ATG5, CAT, and RBR are involved in the Scots pine embryogenesis and cell death processes. CAT seems to protect cells against hydrogen peroxide accumulation and oxidative stress related cell death especially during active metabolism. The opposite expression of RBR in the ESR and nucellar layers alongside morphological characteristics emphasizes the different type of the cell death processes in these tissues. Furthermore, the changes in ATG5 and RBR expressions specifically in the megagametophyte cells dying by necrotic cell death suggest the genetic regulation of developmental necrosis in Scots pine embryogenesis.


PLOS ONE | 2014

Evolution, three-dimensional model and localization of truncated hemoglobin PttTrHb of hybrid aspen.

Estelle Dumont; Soile Jokipii-Lukkari; Vimal Parkash; Jaana Vuosku; Robin Sundström; Yvonne Nymalm; Suvi Sutela; Katariina Taskinen; Tiina A. Salminen; Hely Häggman

Thus far, research on plant hemoglobins (Hbs) has mainly concentrated on symbiotic and non-symbiotic Hbs, and information on truncated Hbs (TrHbs) is scarce. The aim of this study was to examine the origin, structure and localization of the truncated Hb (PttTrHb) of hybrid aspen (Populus tremula L. × tremuloides Michx.), the model system of tree biology. Additionally, we studied the PttTrHb expression in relation to non-symbiotic class1 Hb gene (PttHb1) using RNAi-silenced hybrid aspen lines. Both the phylogenetic analysis and the three-dimensional (3D) model of PttTrHb supported the view that plant TrHbs evolved vertically from a bacterial TrHb. The 3D model suggested that PttTrHb adopts a 2-on-2 sandwich of α-helices and has a Bacillus subtilis -like ligand-binding pocket in which E11Gln and B10Tyr form hydrogen bonds to a ligand. However, due to differences in tunnel cavity and gate residue (E7Ala), it might not show similar ligand-binding kinetics as in Bs-HbO (E7Thr). The immunolocalization showed that PttTrHb protein was present in roots, stems as well as leaves of in vitro -grown hybrid aspens. In mature organs, PttTrHb was predominantly found in the vascular bundles and specifically at the site of lateral root formation, overlapping consistently with areas of nitric oxide (NO) production in plants. Furthermore, the NO donor sodium nitroprusside treatment increased the amount of PttTrHb in stems. The observed PttTrHb localization suggests that PttTrHb plays a role in the NO metabolism.


Plant Methods | 2010

Dealing with the problem of non-specific in situ mRNA hybridization signals associated with plant tissues undergoing programmed cell death

Jaana Vuosku; Suvi Sutela; Mira Sääskilahti; Johanna Kestilä; Anne Jokela; Tytti Sarjala; Hely Häggman

BackgroundIn situ hybridization is a general molecular method typically used for the localization of mRNA transcripts in plants. The method provides a valuable tool to unravel the connection between gene expression and anatomy, especially in species such as pines which show large genome size and shortage of sequence information.ResultsIn the present study, expression of the catalase gene (CAT) related to the scavenging of reactive oxygen species (ROS) and the polyamine metabolism related genes, diamine oxidase (DAO) and arginine decarboxylase (ADC), were localized in developing Scots pine (Pinus sylvestris L.) seeds. In addition to specific signals from target mRNAs, the probes continually hybridized non-specifically in the embryo surrounding region (ESR) of the megagametophyte tissue, in the remnants of the degenerated suspensors as well as in the cells of the nucellar layers, i.e. tissues exposed to cell death processes and extensive nucleic acid fragmentation during Scots pine seed development.ConclusionsIn plants, cell death is an integral part of both development and defence, and hence it is a common phenomenon in all stages of the life cycle. Our results suggest that extensive nucleic acid fragmentation during cell death processes can be a considerable source of non-specific signals in traditional in situ mRNA hybridization. Thus, the visualization of potential nucleic acid fragmentation simultaneously with the in situ mRNA hybridization assay may be necessary to ensure the correct interpretation of the signals in the case of non-specific hybridization of probes in plant tissues.

Collaboration


Dive into the Jaana Vuosku's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tytti Sarjala

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riina Muilu-Mäkelä

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Françoise Martz

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge