Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karoliina Niemi is active.

Publication


Featured researches published by Karoliina Niemi.


Plant Cell Tissue and Organ Culture | 2004

Application of ectomycorrhizal fungi in vegetative propagation of conifers

Karoliina Niemi; Carolyn F. Scagel; Hely Häggman

In forestry, vegetative propagation is important for the production of selected genotypes and shortening the selection cycles in genetic improvement programs. In vivo cutting production, in vitro organogenesis and somatic embryogenesis are applicable with conifers. However, with most coniferous species these methods are not yet suitable for commercial application. Large-scale production of clonal material using cuttings or organogenesis is hindered by rooting problems and difficulties in the maturation and conversion limit the use of somatic embryogenesis. Economically important conifers form symbiotic relationship mostly with ectomycorrhizal (ECM) fungi, which increase the fitness of the host tree. Several studies have shown the potential of using ECM fungi in conifer vegetative propagation. Inoculation with specific fungi can enhance root formation and/or subsequent root branching of in vivo cuttings and in vitro adventitious shoots. Germination of somatic embryos and subsequent root growth can also be improved by the use of ECM fungi. In addition, inoculation can increase the trees ability to overcome the stress related to ex vitro transfer. A specific interaction between a fungal strain and tree clone occurs during root induction and germination of somatic embryos. Multiple rooting factors exist in this interaction that complicate the predictability of the response to inoculation. Fungal-specific factors that influence rooting responses to inoculation may include plant growth regulator production, modification of the rooting environment, and interactions with beneficial microbes. A combination of these factors may act synergistically to result in positive responses in tree genotypes that are compatible with the fungus.


Mycorrhiza | 2002

Pisolithus tinctorius promotes germination and forms mycorrhizal structures in Scots pine somatic embryos in vitro.

Karoliina Niemi; Hely Häggman

Abstract. The results of the present study show that inoculation with the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch potentially enhances the germination of Scots pine (Pinus sylvestris L.) somatic embryos in vitro. Stimulation by Pisolithus tinctorius was only observed in the absence of direct contact between the symbionts; mature embryos were not sufficiently robust for balanced interaction with the fungus on half-strength DCR medium. Subsequently, on MMN medium with a reduced sugar concentration, direct contact between somatic embryo-derived plants and the fungus resulted in in vitro formation of mycorrhiza. Ex vitro inoculation also improved adaptation of the somatic embryo-derived plants, even though mycorrhizal structures were not observed. The reactions to Pisolithus tinctorius varied between different Scots pine cell lines both in vitro and ex vitro.


Tree Physiology | 2014

Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro

Johanna Pohjanen; Janne J. Koskimäki; Suvi Sutela; Pavlo Ardanov; Marja Suorsa; Karoliina Niemi; Tytti Sarjala; Hely Häggman; Anna Maria Pirttilä

Tissues of Scots pine (Pinus sylvestris L.) contain several endophytic microorganisms of which Methylobacterium extorquens DSM13060 is a dominant species throughout the year. Similar to other endophytic bacteria, M. extorquens is able to colonize host plant tissues without causing any symptoms of disease. In addition to endophytic bacteria, plants associate simultaneously with a diverse set of microorganisms. Furthermore, plant-colonizing microorganisms interact with each other in a species- or strain-specific manner. Several studies on beneficial microorganisms interacting with plants have been carried out, but few deal with interactions between different symbiotic organisms and specifically, how these interactions affect the growth and development of the host plant. Our aim was to study how the pine endophyte M. extorquens DSM13060 affects pine seedlings and how the co-inoculation with ectomycorrhizal (ECM) fungi [Suillus variegatus (SV) or Pisolithus tinctorius (PT)] alters the response of Scots pine. We determined the growth, polyamine and nutrient contents of inoculated and non-inoculated Scots pine seedlings in vitro. Our results show that M. extorquens is able to improve the growth of seedlings at the same level as the ECM fungi SV and PT do. The effect of co-inoculation using different symbiotic organisms was seen in terms of changes in growth and nutrient uptake. Inoculation using M. extorquens together with ECM fungi improved the growth of the host plant even more than single ECM inoculation. Symbiotic organisms also had a strong effect on the potassium content of the seedling. The results indicate that interaction between endophyte and ECM fungus is species dependent, leading to increased or decreased nutrient content and growth of pine seedlings.


Journal of Experimental Botany | 2008

Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction

Soile Jokipii; Hely Häggman; Günter Brader; Karoliina Niemi

Present knowledge on plant non-symbiotic class-1 (Hb1) and truncated (TrHb) haemoglobin genes is almost entirely based on herbaceous species while the corresponding tree haemoglobin genes are not well known. The function of these genes has recently been linked with endosymbioses between plants and microbes. In this work, the coding sequences of hybrid aspen (Populus tremula×tremuloides) PttHb1 and PttTrHb were characterized, indicating that the key residues of haem and ligand binding of both genes were conserved in the deduced amino acid sequences. The expression of PttHb1 and PttTrHb was examined in parallel with that of the heterologous Vitreoscilla haemoglobin gene (vhb) during ectomycorrhiza/ectomycorrhizal (ECM) interaction. Both ECM fungi studied, Leccinum populinum and Xerocomus subtomentosus, enhanced root formation and subsequent growth of roots of all hybrid aspen lines, but only L. populinum was able to form mycorrhizas. Real-time PCR results show that the dual culture with the ECM fungus, with or without emergence of symbiotic structures, increased the expression of both PttHb1 and PttTrHb in the roots of non-transgenic hybrid aspens. PttHb1 and PttTrHb had expression peaks 5 h and 2 d after inoculation, respectively, pointing to different functions for these genes during interaction with root growth-improving fungi. In contrast, ECM fungi were not able to enhance the expression of hybrid aspen endogenous haemoglobin genes in the VHb lines, which may be a consequence of the compensating action of heterologous haemoglobin.


Mycorrhiza | 2003

Ectomycorrhizal fungal species and strains differ in their ability to produce free and conjugated polyamines

Karoliina Niemi; Hely Häggman; Tytti Sarjala

Production of free and conjugated polyamines by one strain of Laccaria proxima (Boud.) Maire, three strains (H, O, K) of Paxillus involutus (Batsch) Fr., and one strain of Pisolithus tinctorius was studied in vitro. Spermidine (Spd) was the main polyamine in the 4-week-old mycelium of all the fungi. It was mainly present in the free form, but it also occurred in conjugated forms. Paxillus involutus strain H released large amounts of free putrescine (Put), and the Pisolithus tinctorius released a compound probably related to cadaverine (Cad). On the other hand, these two fungi contained less conjugated polyamines than the other fungi. In addition to the amounts, the forms (perchloric acid soluble and insoluble) of conjugated polyamines in the mycelium varied between species and strains. L. proxima contained nearly as much insoluble conjugated Spd as free Spd, whereas Paxillus involutus strains O and K contained relatively large amounts of soluble conjugated Spd. The results suggest that ectomycorrhizal fungal species and strains differ in their ability and need to produce conjugated polyamines. The small amounts of soluble conjugated polyamines found in the culture filtrates indicate that some specific conjugated polyamines may be involved in polyamine translocation across the plasma membrane.


Plant Physiology and Biochemistry | 2010

Mycorrhiza formation is not needed for early growth induction and growth-related changes in polyamines in Scots pine seedlings in vitro.

Tytti Sarjala; Karoliina Niemi; Hely Häggman

Ectomycorrhizal (ECM) fungi have been shown to improve growth of the host plant before the formation of physical ECM structures, i.e. during the so-called pre-mycorrhizal phase. In the present study, changes in growth and the concentrations of individual polyamines (PAs) were followed during the mycorrhiza formation in Scots pine (Pinus sylvestris) seedlings in the presence of two ECM fungi, Pisolithus tinctorius and Paxillus involutus. The two fungus stains were chosen because they differed in infection characteristics as well as in PA and auxin production. The results were compared to our earlier study with two Suillus variegatus strains forming ECMs with Scots pine seedlings in vitro. Paxillus was not able to form ECMs whereas Pisolithus formed ECM association with Scots pine seedlings within two weeks. However, Paxillus enhanced the growth of the seedlings more than Pisolithus. Paxillus also increased putrescine (Put) concentrations of the seedlings in the pre-mycorrhizal phase much more than Pisolithus. A similar trend was observed in the free spermidine (Spd) in stems, whereas in the needles Paxillus decreased free Spd concentration. Pisolithus caused a threefold greater increase in root free Spd than Paxillus. Effects of Paxillus on the growth and PA fluctuation, excluding root free Spd, of the host plant resembled that observed in our previous in vitro study on S. variegatus-Scots pine interaction. Therefore, changes in specific PA concentrations in the pre-mycorrhizal phase seem to be related to growth induction by the ECM fungus rather than to mycorrhiza formation. Moreover, we suggest that growth induction in host plants is not necessarily followed by ECM formation.


BMC Plant Biology | 2009

Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch.

Suvi Sutela; Karoliina Niemi; Jaanika Edesi; Tapio Laakso; Pekka Saranpää; Jaana Vuosku; Riina Mäkelä; Heidi Tiimonen; Vincent L. Chiang; Janne J. Koskimäki; Marja Suorsa; Riitta Julkunen-Tiitto; Hely Häggman

BackgroundThe monolignol biosynthetic pathway interconnects with the biosynthesis of other secondary phenolic metabolites, such as cinnamic acid derivatives, flavonoids and condensed tannins. The objective of this study is to evaluate whether genetic modification of the monolignol pathway in silver birch (Betula pendula Roth.) would alter the metabolism of these phenolic compounds and how such alterations, if exist, would affect the ectomycorrhizal symbiosis.ResultsSilver birch lines expressing quaking aspen (Populus tremuloides L.) caffeate/5-hydroxyferulate O-methyltransferase (PtCOMT) under the 35S cauliflower mosaic virus (CaMV) promoter showed a reduction in the relative expression of a putative silver birch COMT (BpCOMT) gene and, consequently, a decrease in the lignin syringyl/guaiacyl composition ratio. Alterations were also detected in concentrations of certain phenolic compounds. All PtCOMT silver birch lines produced normal ectomycorrhizas with the ectomycorrhizal fungus Paxillus involutus (Batsch: Fr.), and the formation of symbiosis enhanced the growth of the transgenic plants.ConclusionThe down-regulation of BpCOMT in the 35S-PtCOMT lines caused a reduction in the syringyl/guaiacyl ratio of lignin, but no significant effect was seen in the composition or quantity of phenolic compounds that would have been caused by the expression of PtCOMT under the 35S or UbB1 promoter. Moreover, the detected alterations in the composition of lignin and secondary phenolic compounds had no effect on the interaction between silver birch and P. involutus.


Silvae Genetica | 2008

Paxillus involutus Forms an Ectomycorrhizal Symbiosis and Enhances Survival of PtCOMT-modified Betula pendula in vitro

Heidi Tiimonen; Tuija Aronen; Tapio Laakso; Pekka Saranpää; Vincent L. Chiang; Hely Häggman; Karoliina Niemi

Abstract The ability of the PtCOMT (caffeate/5-hydroxyferulate O-methyltransferase from Populus tremuloides L.) - modified Betula pendula Roth. lines to form symbiosis with an ectomycorrhizal (ECM) fungus Paxillus involutus Batsch Fr. was studied in vitro. Lignin precursor gene PtCOMT was introduced into two B. pendula clones under the control of the cauliflower mosaic virus 35S promoter or the promoter of the sunflower polyubiquitin gene UbB1. Of the four transgenic lines, one 35SPtCOMT line (23) had a decreased syringyl/guaiacyl (S/G) ratio of root lignin, and two UbB1-PtCOMT lines (110 and 130) retarded root growth compared to the control clone. Both control clones and all transgenic lines were able to form ECMs with P. involutus, but the transgenic lines differed from the controls in the characteristics of the ECMs. The number of lateral roots covered with fungal hyphae and/or development of a Hartig net (HN) were reduced in line 23 with a decreased S/G ratio, and in lines 110 and 130 with slower root formation and changed root morphology, respectively. However, line 23 benefited more from the inoculation in lateral root formation than the control, and in lines 110 and 130 the percentage of viable plants increased most due to inoculation. The results show that B. pendula plants genetically transformed with the lignin gene PtCOMT could form mycorrhizal symbiosis regardless of changes in either the root S/G ratio or development. The benefits of the symbiosis were variable even in the closed in vitro system, and dependent on the clone or transgenic line and the ECM fungal symbiont.


Methods of Molecular Biology | 2009

Medicinal Properties, In Vitro Protocols and Secondary Metabolite Analyses of Scots Pine

Hely Häggman; Anna Maria Pirttilä; Karoliina Niemi; Tytti Sarjala; Riitta Julkunen-Tiitto

Scots pine (Pinus sylvestris L.) is known as an economically important forest tree with a wide distribution throughout the Northern hemisphere. Recently, the species has also become recognized as a novel source of functional food and bioactive compounds with medicinal properties. The present paper provides up-to-date information on protocols for somatic embryogenesis (i.e., the most promising in vitro method for vegetative propagation of Scots pine). Endophyte protocols cover the topics of endophyte isolation, identification and elimination from in vitro cultures. Moreover, the protocols for secondary metabolite analyses are described in order to emphasize the emerging role of Scots pine as a medicinal plant.


Archive | 2006

Environmental Aspects of Lignin Modified Trees

Hely Häggman; Karoliina Niemi; Heidi Tiimonen; Tiina Ylioja; Vincent L. Chiang

The increasing global need for food and fiber results in new demands for the efficiency of wood production and wood products (Fenning and Gershenzon 2002) which has to be attained on the basis of sustainable development. The majority of world wood products still comes from natural and seminatural forests, but there is a clear trend towards more efficient plantation forestry (Walter 2004). Development of vegetative propagation methods, including cutting technology, organogenesis and, in particular, somatic embryogenesis will yield additional profit for plantation forestry by the exploitation of non-additive genetic variation, by providing more homogenous material and by compensating potential shortage of improved seed stock. However, economically relevant clonal plantation forestry is currently a reality for only a few species, out of which Pseudotsuga menziesii Mirbel Franco, Pinus taeda L., Pinus radiata D.Don, Populus spp., Eucalyptus spp. and Picea spp. are prominent (Sutton 1999a,b; Pena and Seguin 2001; Cyr and Klimaszewska 2002). Conventional breeding of forest trees is in many cases hindered by long generation times and self-incompatibility mechanisms. Genetic transformation of forest trees has been considered the mechanism to achieve genetic gain when combined with conventional breeding and plantation forestry. There are several traits that show potential for a molecular breeding approach, e.g. reduction of generation time, production of sterile trees, pest or disease resistance, wood formation (including lignin and cellulose engineering), resistance to biodegradable herbicides, durability, phytoremediation of polluted sites and the production of novel chemicals and pharmaceuticals (reviewed by Pena and Seguin 2001; Fenning and Gershenzon 2002; Diouf 2003). Highly complex traits such as wood formation and the shortening of the juvenile phase have been considered the most important ones for achieving gain and for further domestication (Fenning and Gershenzon 2002). 5 Environmental Aspects of Lignin Modified Trees

Collaboration


Dive into the Karoliina Niemi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tytti Sarjala

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heidi Tiimonen

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent L. Chiang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge