Jaap D. Bregman
ASTRON
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jaap D. Bregman.
Proceedings of the IEEE | 2009
A. van Ardenne; Jaap D. Bregman; W. van Cappellen; G. W. Kant; J.G.B. de Vaate
The radio frequency window of the square kilometre array is planned to cover the wavelength regime from centimeters up to a few meters. For this range to be optimally covered, different antenna concepts are considered. At the lowest frequency range, up to a few gigahertz, it is expected that multibeam techniques will be used, increasing the effective field-of-view to a level that allows very efficient detailed and sensitive exploration of the complete sky. Although sparse narrow-band phased arrays are as old as radio astronomy, multioctave sparse and dense arrays now considered for the SKA require new low-noise design, signal processing, and calibration techniques. The successful implementation of these new array techniques has already been introduced for the use of phased array feeds upgrading existing telescopes: enhancing aperture efficiency as well as effective field-of-view. Especially the development of low-cost array antenna design will allow a cost-effective large-scale implementation for the SKA. This paper addresses these new capabilities, emphasizing the R&D work done in Europe and aims to provide insight into the status of enabling technologies and technical research on polarization, calibration, and side-lobe control that will unleash the potential of phased arrays for future growth of radio astronomy synthesis arrays.
Astronomy and Astrophysics | 2014
D. E. Morosan; Peter T. Gallagher; Pietro Zucca; R. A. Fallows; Eoin P. Carley; G. Mann; M. M. Bisi; A. Kerdraon; A. A. Konovalenko; Alexander L. MacKinnon; Helmut O. Rucker; B. Thidé; J. Magdalenić; C. Vocks; Hamish A. S. Reid; J. Anderson; A. Asgekar; I. M. Avruch; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; Jaap D. Bregman; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; John Conway; F. de Gasperin
The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio telescopes. Here, the combined high spatial, spectral and temporal resolution of the Low Frequency Array (LOFAR) was used to study solar Type III radio bursts at 30-90 MHz and their association with CMEs. The Sun was imaged with 126 simultaneous tied-array beams within 5 solar radii of the solar centre. This method offers benefits over standard interferometric imaging since each beam produces high temporal (83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFARs standard interferometric output is currently limited to one image per second. Over a period of 30 minutes, multiple Type III radio bursts were observed, a number of which were found to be located at high altitudes (4 solar radii from the solar center at 30 MHz) and to have non-radial trajectories. These bursts occurred at altitudes in excess of values predicted by 1D radial electron density models. The non-radial high altitude Type III bursts were found to be associated with the expanding flank of a CME. The CME may have compressed neighbouring streamer plasma producing larger electron densities at high altitudes, while the non-radial burst trajectories can be explained by the deflection of radial magnetic fields as the CME expanded in the low corona.
european radar conference | 2006
W. van Cappellen; Stefan J. Wijnholds; Jaap D. Bregman
This paper presents the trade-offs between sparse versus dense and regular versus irregular arrays for the station configuration of the LOFAR low band antenna. The relation between these parameters and the element patterns, station beam patterns, effective area, receiver noise temperature, tapering opportunities and the field of view (or beam width) are presented. A method is proposed and evaluated to suppress the peak grating lobe level in an aperture synthesis telescope consisting of regular sparse stations
Journal of Instrumentation | 2015
A. Nelles; J.R. Hörandel; T. Karskens; M. Krause; S. Buitink; A. Corstanje; J. E. Enriquez; M. Erdmann; H. Falcke; A. Haungs; R. Hiller; T. Huege; R. Krause; K. Link; M. J. Norden; J. P. Rachen; L. Rossetto; P. Schellart; Olaf Scholten; F.G. Schröder; S. ter Veen; Satyendra Thoudam; T. N. G. Trinh; K. Weidenhaupt; Stefan J. Wijnholds; J. Anderson; L. Bähren; M. E. Bell; Marinus Jan Bentum; Philip Best
Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.
Astroparticle Physics | 2015
A. Nelles; P. Schellart; S. Buitink; A. Corstanje; K. D. de Vries; J. E. Enriquez; H. Falcke; W. Frieswijk; J.R. Hörandel; Olaf Scholten; S. ter Veen; Satyendra Thoudam; M. van den Akker; J. Anderson; A. Asgekar; M. E. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; Jaap D. Bregman; F. Breitling; J. Broderick; W. N. Brouw; M. Brüggen; H. R. Butcher; B. Ciardi; Adam T. Deller; S. Duscha; J. Eislöffel; R. A. Fallows
Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ∼100∼100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110–190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.
Experimental Astronomy | 2004
Stefan J. Wijnholds; Jaap D. Bregman; Albert Jan Boonstra
The initial test station (ITS) is the first full scale prototype of a low frequency array (LOFAR) station. It operates in the 10–40 MHz range and consists of 60 sky noise limited dipoles arranged in a five-armed spiral structure offering an instantaneous synthesized aperture of almost 200 m diameter. We will present all sky snapshot images demonstrating sky-noise limited imaging capability in the presence of a strong RFI source that exceeds the all sky power by 27 dB. This result is obtained with a two stage self-calibration procedure. First, the RFI source near the horizon is used as calibrator and then subtracted, after which Cas A shows up at a level that is a factor 2000 lower and then dominates the picture with its side lobes. A second self calibration on Cas A then reveals the same extended galactic emission as found in a RFI free adjacent spectral channel. This demonstrates that a single 10 kHz channel of a 6.7 s snapshot of a single LOFAR station already provides a dynamic range of over 104.
Radio Science | 2016
M. Mevius; S. van der Tol; V. N. Pandey; H. K. Vedantham; M. A. Brentjens; A. G. Bruyn; F. B. Abdalla; K. M. B. Asad; Jaap D. Bregman; W. N. Brouw; S. Bus; E. Chapman; B. Ciardi; Elizabeth R. Fernandez; Abhirup Ghosh; G. Harker; Ilian T. Iliev; Vibor Jelić; S. Kazemi; Léon V. E. Koopmans; Jan E. Noordam; A. R. Offringa; A. H. Patil; R. J. Weeren; Stefan J. Wijnholds; S. Yatawatta; Saleem Zaroubi
LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53′N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total electron content values with an accuracy better than 0.001 total electron content unit = 1016m−2 over distances ranging between 1 and 100 km. For all observations the power law behavior of the phase structure function is confirmed over a long range of baseline lengths, between 1 and 80 km, with a slope that is, in general, larger than the 5/3 expected for pure Kolmogorov turbulence. The measured average slope is 1.89 with a one standard deviation spread of 0.1. The diffractive scale, i.e., the length scale where the phase variance is 1rad2, is shown to be an easily obtained single number that represents the ionospheric quality of a radio interferometric observation. A small diffractive scale is equivalent to high phase variability over the field of view as well as a short time coherence of the signal, which limits calibration and imaging quality. For the studied observations the diffractive scales at 150 MHz vary between 3.5 and 30 km. A diffractive scale above 5 km, pertinent to about 90% of the observations, is considered sufficient for the high dynamic range imaging needed for the LOFAR epoch of reionization project. For most nights the ionospheric irregularities were anisotropic, with the structures being aligned with the Earth magnetic field in about 60% of the observations.
Proceedings of SPIE | 2004
Marianna Ivashina; Jan Geralt bij de Vaate; Robert Braun; Jaap D. Bregman
The surveying speed of large reflectors can be increased by one or two orders of magnitude when the focal fields are sampled with a dense phased array. In a dense array consisting of a large number of antenna elements (100 up to 1000), multiple beams can be synthesised and steered electronically. This collecting and manipulating of the entire electric field in the focal plane creates the possibility of a simultaneously improvement in the efficiency of existing telescopes and open up wide fields-of-view. This paper will describe the first results of the EU project FARADAY. The approach chosen in FARADAY is to use a Vivaldi array of 72 antenna elements configured in 8x9 grid. The analogue beamformer, integrated with the antenna array, syntheses beams by using for example 3x3 elements combined in three rings, where each ring is given a specific weight factor. The number of beams has been limited to two in this demonstrator project. Further more we will explore the possibilities and limitations of the large-scale use of Focal Plane Arrays, in particular for the fourteen 25-meter reflectors of the Westerbork Syntheses Radio Telescope (WSRT).
Astronomy and Astrophysics | 2015
J. Moldon; Adam T. Deller; O. Wucknitz; N. Jackson; A. Drabent; Tobia Carozzi; John Conway; A. D. Kapińska; John McKean; L. K. Morabito; Eskil Varenius; P. Zarka; J. Anderson; A. Asgekar; I. M. Avruch; M. E. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; L. Bîrzan; Jaap D. Bregman; F. Breitling; John Broderick; M. Brüggen; H. R. Butcher; D. Carbone; B. Ciardi; F. de Gasperin; E. de Geus; S. Duscha
Aims. An efficient means of locating calibrator sources for International LOFAR is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz. Methods. We used the multi-beaming capability of LOFAR to conduct a fast and computationally inexpensive survey with the full International LOFAR array. Sources were pre-selected on the basis of 325 MHz arcminute-scale flux density using existing catalogues. By observing 30 different sources in each of the 12 sets of pointings per hour, we were able to inspect 630 sources in two hours to determine if they possess a sufficiently bright compact component to be usable as LOFAR delay calibrators. Results. Over 40% of the observed sources are detected on multiple baselines between international stations and 86 are classified as satisfactory calibrators. We show that a flat low-frequency spectrum (from 74 to 325 MHz) is the best predictor of compactness at 140 MHz. We extrapolate from our sample to show that the density of calibrators on the sky that are sufficiently bright to calibrate dispersive and non-dispersive delays for the International LOFAR using existing methods is 1.0 per square degree. Conclusions. The observed density of satisfactory delay calibrator sources means that observations with International LOFAR should be possible at virtually any point in the sky, provided that a fast and efficient search using the methodology described here is conducted prior to the observation to identify the best calibrator.
Astronomy and Astrophysics | 2013
S. Yatawatta; de Antonius Bruyn; M. A. Brentjens; P. Labropoulos; V. N. Pandey; S. Kazemi; Saleem Zaroubi; Luitje Koopmans; A. R. Offringa; Vibor Jelić; O. Martinez Rubi; V. Veligatla; Stefan J. Wijnholds; W. N. Brouw; G. Bernardi; B. Ciardi; S. Daiboo; G. Harker; Garrelt Mellema; Joop Schaye; Rajat M. Thomas; H. Vedantham; E. Chapman; F. B. Abdalla; A. Alexov; J. Anderson; I. M. Avruch; F. Batejat; M. E. Bell; M. R. Bell
Aims. The aim of the LOFAR epoch of reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21 cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. Methods. One of the prospective observing windows for the LOFAR EoR project will be centered at the north celestial pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. The data was processed using a dedicated processing pipeline which is an enhanced version of the standard LOFAR processing pipeline. Results. With about 3 nights, of 6 h each, effective integration we have achieved a noise level of about 100 mu Jy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 mu Jy/PSF, mainly due to additional contamination from unsubtracted nearby sources. We estimate that in our best night, we have reached a noise level only a factor of 1.4 above the thermal limit set by the noise from our Galaxy and the receivers. Our continuum images are several times deeper than have been achieved previously using the WSRT and GMRT arrays. We derive an analytical explanation for the excess noise that we believe to be mainly due to sources at large angular separation from the NCP. We present some details of the data processing challenges and how we solved them. Conclusions. Although many LOFAR stations were, at the time of the observations, in a still poorly calibrated state we have seen no artefacts in our images which would prevent us from producing deeper images in much longer integrations on the NCP window which are about to commence. The limitations present in our current results are mainly due to sidelobe noise from the large number of distant sources, as well as errors related to station beam variations and rapid ionospheric phase fluctuations acting on bright sources. We are confident that we can improve our results with refined processing.