Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan E. Noordam is active.

Publication


Featured researches published by Jan E. Noordam.


Astronomy and Astrophysics | 2010

The MeqTrees software system and its use for third-generation calibration of radio interferometers

Jan E. Noordam; Oleg M. Smirnov

Context. The formulation of the radio interferometer measurement equation (RIME) for a generic radio telescope by Hamaker et al. has provided us with an elegant mathematical apparatus for better understanding, simulation and calibration of existi ng and future instruments. The calibration of the new radio telescopes (LOFAR, SKA) would be unthinkable without the RIME formalism,and new software to exploit it. Aims. The MeqTrees software system is designed to implement numerical models, and to solve for arbitrary subsets of their para meters. It may be applied to many problems, but was originally geared towards implementing Measurement Equations in radio astronomy for the purposes of simulation and calibration. The technical goal of MeqTrees is to provide a tool for rapid implementation of such models, while offering performance comparable to hand-written code. We are also pursuing the wider goal of increasing the rate of evolution of radio astronomical software, by offering a tool that facilitates rapid experimentation, and ex change of ideas (and scripts). Methods. MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an effi cient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time (hours rather than weeks or months) for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all fin al and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code. Results. MeqTrees is already widely used as the simulation tool for new instruments (LOFAR, SKA) and technologies (focal plane arrays). It has demonstrated that it can achieve a noise-lim ited dynamic range in excess of a million, on WSRT data. It is the only package that is specifically designed to handle what we propo se to call third-generation calibration (3GC), which is needed for the new generation of giant radio telescopes, but can also improve the calibration of existing instruments.


Astronomy and Astrophysics | 2012

M 87 at metre wavelengths: the LOFAR picture

F. de Gasperin; E. Orru; M. Murgia; Andrea Merloni; H. Falcke; R. Beck; R. J. Beswick; L. Bîrzan; A. Bonafede; M. Brüggen; G. Brunetti; K. T. Chyży; John Conway; J. H. Croston; T. A. Enßlin; C. Ferrari; George Heald; S. Heidenreich; N. Jackson; G. Macario; John McKean; George K. Miley; Raffaella Morganti; A. R. Offringa; R. Pizzo; David A. Rafferty; H. J. A. Röttgering; A. Shulevski; M. Steinmetz; C. Tasse

Context. M87 is a giant elliptical galaxy located in the centre of the Virgo cluster, which harbours a supermassive black hole of mass 6.4×109 M, whose activity is responsible for the extended (80 kpc) radio lobes that surround the galaxy. The energy generated by matter falling onto the central black hole is ejected and transferred to the intra-cluster medium via a relativistic jet and morphologically complex systems of buoyant bubbles, which rise towards the edges of the extended halo. Aims. To place constraints on past activity cycles of the active nucleus, images of M 87 were produced at low radio frequencies never explored before at these high spatial resolution and dynamic range. To disentangle different synchrotron models and place constraints on source magnetic field, age and energetics, we also performed a detailed spectral analysis of M 87 extended radio-halo. Methods. We present the first observations made with the new Low-Frequency Array (LOFAR) of M 87 at frequencies down to 20 MHz. Three observations were conducted, at 15−30 MHz, 30−77 MHz and 116−162 MHz. We used these observations together with archival data to produce a low-frequency spectral index map and to perform a spectral analysis in the wide frequency range 30 MHz–10 GHz. Results. We do not find any sign of new extended emissions; on the contrary the source appears well confined by the high pressure of the intracluster medium. A continuous injection of relativistic electrons is the model that best fits our data, and provides a scenario in which the lobes are still supplied by fresh relativistic particles from the active galactic nuclei. We suggest that the discrepancy between the low-frequency radiospectral slope in the core and in the halo implies a strong adiabatic expansion of the plasma as soon as it leaves the core area. The extended halo has an equipartition magnetic field strength of 10 μG, which increases to 13 μG in the zones where the particle flows are more active. The continuous injection model for synchrotron ageing provides an age for the halo of 40 Myr, which in turn provides a jet kinetic power of 6−10 × 1044 erg s−1.


Astronomy and Astrophysics | 2012

First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256

R. J. van Weeren; H. J. A. Röttgering; David A. Rafferty; R. Pizzo; A. Bonafede; M. Brüggen; G. Brunetti; C. Ferrari; E. Orru; George Heald; John McKean; C. Tasse; F. de Gasperin; L. Bîrzan; J. E. van Zwieten; S. van der Tol; A. Shulevski; N. Jackson; A. R. Offringa; John Conway; H. T. Intema; T. E. Clarke; I. van Bemmel; G. K. Miley; G. J. White; M. Hoeft; R. Cassano; G. Macario; Raffaella Morganti; M. W. Wise

Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 +/- 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 +/- 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last similar to 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.


Astronomy and Astrophysics | 2013

The LOFAR radio environment

A. R. Offringa; A. G. de Bruyn; Saleem Zaroubi; G. van Diepen; O. Martinez-Ruby; P. Labropoulos; M. A. Brentjens; B. Ciardi; S. Daiboo; G. Harker; Vibor Jelić; S. Kazemi; L. V. E. Koopmans; Garrelt Mellema; V. N. Pandey; R. Pizzo; Joop Schaye; H. Vedantham; V. Veligatla; Stefan J. Wijnholds; S. Yatawatta; P. Zarka; A. Alexov; J. Anderson; A. Asgekar; M. Avruch; R. Beck; M. E. Bell; M. R. Bell; Marinus Jan Bentum

Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz / 1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFARs nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.


Radio Science | 2016

Probing ionospheric structures using the LOFAR radio telescope

M. Mevius; S. van der Tol; V. N. Pandey; H. K. Vedantham; M. A. Brentjens; A. G. Bruyn; F. B. Abdalla; K. M. B. Asad; Jaap D. Bregman; W. N. Brouw; S. Bus; E. Chapman; B. Ciardi; Elizabeth R. Fernandez; Abhirup Ghosh; G. Harker; Ilian T. Iliev; Vibor Jelić; S. Kazemi; Léon V. E. Koopmans; Jan E. Noordam; A. R. Offringa; A. H. Patil; R. J. Weeren; Stefan J. Wijnholds; S. Yatawatta; Saleem Zaroubi

LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53′N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total electron content values with an accuracy better than 0.001 total electron content unit = 1016m−2 over distances ranging between 1 and 100 km. For all observations the power law behavior of the phase structure function is confirmed over a long range of baseline lengths, between 1 and 80 km, with a slope that is, in general, larger than the 5/3 expected for pure Kolmogorov turbulence. The measured average slope is 1.89 with a one standard deviation spread of 0.1. The diffractive scale, i.e., the length scale where the phase variance is 1rad2, is shown to be an easily obtained single number that represents the ionospheric quality of a radio interferometric observation. A small diffractive scale is equivalent to high phase variability over the field of view as well as a short time coherence of the signal, which limits calibration and imaging quality. For the studied observations the diffractive scales at 150 MHz vary between 3.5 and 30 km. A diffractive scale above 5 km, pertinent to about 90% of the observations, is considered sufficient for the high dynamic range imaging needed for the LOFAR epoch of reionization project. For most nights the ionospheric irregularities were anisotropic, with the structures being aligned with the Earth magnetic field in about 60% of the observations.


Astronomy and Astrophysics | 2012

Wide-band simultaneous observations of pulsars: disentangling dispersion measure and profile variations

T. E. Hassall; B. W. Stappers; J. W. T. Hessels; M. Kramer; A. Alexov; K. Anderson; T. Coenen; A. Karastergiou; E. F. Keane; V. I. Kondratiev; K. Lazaridis; J. van Leeuwen; A. Noutsos; M. Serylak; C. Sobey; J. P. W. Verbiest; P. Weltevrede; K. Zagkouris; R. P. Fender; R. A. M. J. Wijers; L. Bähren; M. E. Bell; J. Broderick; S. Corbel; E. J. Daw; V. S. Dhillon; J. Eislöffel; H. Falcke; Jean-Mathias Grießmeier; P. G. Jonker

Dispersion in the interstellar medium is a well known phenomenon that follows a simple relationship, which has been used to predict the time delay of dispersed radio pulses since the late 1960s. We performed wide-band simultaneous observations of four pulsars with LOFAR (at 40-190 MHz), the 76-m Lovell Telescope (at 1400 MHz) and the Effelsberg 100-m Telescope (at 8000 MHz) to test the accuracy of the dispersion law over a broad frequency range. In this paper we present the results of these observations which show that the dispersion law is accurate to better than 1 part in 100000 across our observing band. We use this fact to constrain some of the properties of the ISM along the line-of-sight and use the lack of any aberration or retardation effects to determine upper limits on emission heights in the pulsar magnetosphere. We also discuss the effect of pulse profile evolution on our observations, and the implications that it could have for precision pulsar timing projects such as the detection of gravitational waves with pulsar timing arrays.


Astronomy and Astrophysics | 2013

Initial deep LOFAR observations of epoch of reionization windows. I. The north celestial pole

S. Yatawatta; de Antonius Bruyn; M. A. Brentjens; P. Labropoulos; V. N. Pandey; S. Kazemi; Saleem Zaroubi; Luitje Koopmans; A. R. Offringa; Vibor Jelić; O. Martinez Rubi; V. Veligatla; Stefan J. Wijnholds; W. N. Brouw; G. Bernardi; B. Ciardi; S. Daiboo; G. Harker; Garrelt Mellema; Joop Schaye; Rajat M. Thomas; H. Vedantham; E. Chapman; F. B. Abdalla; A. Alexov; J. Anderson; I. M. Avruch; F. Batejat; M. E. Bell; M. R. Bell

Aims. The aim of the LOFAR epoch of reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21 cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. Methods. One of the prospective observing windows for the LOFAR EoR project will be centered at the north celestial pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. The data was processed using a dedicated processing pipeline which is an enhanced version of the standard LOFAR processing pipeline. Results. With about 3 nights, of 6 h each, effective integration we have achieved a noise level of about 100 mu Jy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 mu Jy/PSF, mainly due to additional contamination from unsubtracted nearby sources. We estimate that in our best night, we have reached a noise level only a factor of 1.4 above the thermal limit set by the noise from our Galaxy and the receivers. Our continuum images are several times deeper than have been achieved previously using the WSRT and GMRT arrays. We derive an analytical explanation for the excess noise that we believe to be mainly due to sources at large angular separation from the NCP. We present some details of the data processing challenges and how we solved them. Conclusions. Although many LOFAR stations were, at the time of the observations, in a still poorly calibrated state we have seen no artefacts in our images which would prevent us from producing deeper images in much longer integrations on the NCP window which are about to commence. The limitations present in our current results are mainly due to sidelobe noise from the large number of distant sources, as well as errors related to station beam variations and rapid ionospheric phase fluctuations acting on bright sources. We are confident that we can improve our results with refined processing.


international conference on digital signal processing | 2009

Radio Interferomietric Calibration Using Te SAGE Algorithm

S. Yatawatta; Saleem Zaroubi; Ger de Bruyn; Léon V. E. Koopmans; Jan E. Noordam

Radio Interferometry is an essential method for astronomical observations. Self-calibration techniques have increased the quality of the radio astronomical observations (and hence the science) by orders of magnitude. Recently, there is a drive towards sensor arrays built using inexpensive hardware and distributed over a wide area acting as radio interferometers. Calibration of such arrays poses new problems in terms of computational cost as well as in performance of existing calibration algorithms. We consider the application of the Space Alternating Generalized Expectation Maximization (SAGE) [1] algorithm for calibration of radio interferometric arrays. Application to real data shows that this is an improvement over existing calibration algorithms that are based on direct, deterministic non linear optimization. As presented in this paper, we can improve the computational cost as well as the quality of the calibration using this algorithm.


Proceedings of SPIE | 2004

Exploratory Submm Space Radio-Interferometric Telescope (ESPRIT)

Thijs de Graauw; J. Cernicharo; Wolfgang Wild; A. Bos; Jaap D. Bregman; Luigi L. A. d'Arcio; Jan-Willem den Herder; A. W. Gunst; Frank Helmich; B. D. Jackson; P. Maat; J. Martin-Pintado; Jan E. Noordam; A. Quirrenbach; Peter Roelfsema; Lars Venema; P. R. Wesselius; Pavel Yagoubov

The far-infrared (FIR) wavelength regime has become of prime importance for astrophysics. Observations of ionic, atomic and molecular lines, many of them present in the FIR, provide important and unique information on the star and planet formation process occurring in interstellar clouds, and on the lifecycle of gas and dust in general. As these regions are heavily obscured by dust, FIR observations are the only means of getting insight in the physical and chemical conditions and their evolution. These investigations require, besides high spectral, also high angular resolution in order to match the small angular sizes of star forming cores and circum-stellar disks. We present here a mission concept, ESPRIT, which will provide both, in a wavelength regime not accessible from ground by ALMA (Atacama Large Millimeter Array), nor with JWST (James Webb Space Telescope).


Astronomy and Astrophysics | 2013

Initial deep LOFAR observations of epoch of reionization windows

S. Yatawatta; de Antonius Bruyn; M. A. Brentjens; P. Labropoulos; V. N. Pandey; S. Kazemi; Saleem Zaroubi; Luitje Koopmans; A. R. Offringa; Vibor Jelić; O. Martinez Rubi; V. Veligatla; Stefan J. Wijnholds; W. N. Brouw; G. Bernardi; B. Ciardi; S. Daiboo; G. Harker; Joop Schaye; Rajat M. Thomas; H. Vedantham; E. Chapman; F. B. Abdalla; A. Alexov; J. Anderson; I. M. Avruch; F. Batejat; M. E. Bell; M. R. Bell; Marinus Jan Bentum

Aims. The aim of the LOFAR epoch of reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21 cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. Methods. One of the prospective observing windows for the LOFAR EoR project will be centered at the north celestial pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. The data was processed using a dedicated processing pipeline which is an enhanced version of the standard LOFAR processing pipeline. Results. With about 3 nights, of 6 h each, effective integration we have achieved a noise level of about 100 mu Jy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 mu Jy/PSF, mainly due to additional contamination from unsubtracted nearby sources. We estimate that in our best night, we have reached a noise level only a factor of 1.4 above the thermal limit set by the noise from our Galaxy and the receivers. Our continuum images are several times deeper than have been achieved previously using the WSRT and GMRT arrays. We derive an analytical explanation for the excess noise that we believe to be mainly due to sources at large angular separation from the NCP. We present some details of the data processing challenges and how we solved them. Conclusions. Although many LOFAR stations were, at the time of the observations, in a still poorly calibrated state we have seen no artefacts in our images which would prevent us from producing deeper images in much longer integrations on the NCP window which are about to commence. The limitations present in our current results are mainly due to sidelobe noise from the large number of distant sources, as well as errors related to station beam variations and rapid ionospheric phase fluctuations acting on bright sources. We are confident that we can improve our results with refined processing.

Collaboration


Dive into the Jan E. Noordam's collaboration.

Top Co-Authors

Avatar

Saleem Zaroubi

Kapteyn Astronomical Institute

View shared research outputs
Top Co-Authors

Avatar

A. Alexov

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

G. Harker

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge