Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacek Jaworski is active.

Publication


Featured researches published by Jacek Jaworski.


The Journal of Neuroscience | 2005

Control of Dendritic Arborization by the Phosphoinositide-3′-Kinase–Akt–Mammalian Target of Rapamycin Pathway

Jacek Jaworski; Samantha A. Spangler; Daniel P. Seeburg; Casper C. Hoogenraad; Morgan Sheng

The molecular mechanisms that determine the size and complexity of the neuronal dendritic tree are unclear. Here, we show that the phosphoinositide-3′ kinase (PI3K)–Akt–mammalian target of rapamycin (mTOR) signaling pathway promotes the growth and branching of dendrites in cultured hippocampal neurons. Constitutively active mutants of Ras, PI3K, and Akt, or RNA interference (RNAi) knockdown of lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome Ten), induced growth and elaboration of dendrites that was blocked by mTOR inhibitor rapamycin and/or by overexpression of eIF-4E binding protein 1 (4E-BP1), which inhibits translation of 5′ capped mRNAs. The effect of PI3K on dendrites was lost in more mature neurons (>14 d in vitro). Dendritic complexity was reduced by inhibition of PI3K and by RNAi knockdown of mTOR or p70 ribosomal S6 kinase (p70S6K, an effector of mTOR). A rapamycin-resistant mutant of mTOR “rescued” the morphogenetic effects of PI3K in the presence of rapamycin. By regulating global and/or local protein translation, and as a convergence point for multiple signaling pathways, mTOR could play a central role in the control of dendrite growth and branching during development and in response to activity.


Neuron | 2009

Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity

Jacek Jaworski; Lukas C. Kapitein; Susana Montenegro Gouveia; Bjorn Dortland; Phebe S. Wulf; Ilya Grigoriev; Paola Camera; Samantha A. Spangler; Paola Di Stefano; Jeroen Demmers; Harm J. Krugers; Paola Defilippi; Anna Akhmanova; Casper C. Hoogenraad

Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morphology. We describe p140Cap/SNIP, a regulator of Src tyrosine kinase, as an EB3 interacting partner that is predominantly localized to spines and enriched in the postsynaptic density. Inhibition of microtubule dynamics, or knockdown of either EB3 or p140Cap, modulates spine shape via regulation of the actin cytoskeleton. Fluorescence recovery after photobleaching revealed that EB3-binding is required for p140Cap accumulation within spines. In addition, we found that p140Cap interacts with Src substrate and F-actin-binding protein cortactin. We propose that EB3-labeled growing microtubule ends regulate the localization of p140Cap, control cortactin function, and modulate actin dynamics within dendritic spines, thus linking dynamic microtubules to spine changes and synaptic plasticity.


Nature Neuroscience | 2005

LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses

Anthone W. Dunah; Emily Hueske; Michael Wyszynski; Casper C. Hoogenraad; Jacek Jaworski; Daniel T. S. Pak; Alyson Simonetta; Guosong Liu; Morgan Sheng

Leukocyte common antigen–related (LAR) family receptor protein tyrosine phosphatases (LAR-RPTP) bind to liprin-α (SYD2) and are implicated in axon guidance. We report that LAR-RPTP is concentrated in mature synapses in cultured rat hippocampal neurons, and is important for the development and maintenance of excitatory synapses in hippocampal neurons. RNA interference (RNAi) knockdown of LAR or dominant-negative disruption of LAR function results in loss of excitatory synapses and dendritic spines, reduction of surface AMPA receptors, impairment of dendritic targeting of the cadherin–β-catenin complex, and reduction in the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs). Cadherin, β-catenin and GluR2/3 are tyrosine phosphoproteins that coimmunoprecipitate with liprin-α and GRIP from rat brain extracts. We propose that the cadherin-β-catenin complex is cotransported with AMPA receptors to synapses and dendritic spines by a mechanism that involves binding of liprin-α to LAR-RPTP and tyrosine dephosphorylation by LAR-RPTP.


Molecular Neurobiology | 2006

The growing role of mTOR in neuronal development and plasticity

Jacek Jaworski; Morgan Sheng

Neuronal development and synaptic plasticity are highly regulated processes in which protein kinases play a key role. Recently, increasing attention has been paid to a serine/threonine protein kinase called mammalian target of rapamycin (mTOR) that has well-known functions in cell proliferation and growth. In neuronal cells, mTOR is implicated in multiple processes, including transcription, ubiquitin-dependent proteolysis, and microtubule and actin dynamics, all of which are crucial for neuronal development and long-term modification of synaptic strength. The aim of this article is to present our current understanding of mTOR functions in axon guidance, dendritic tree development, formation of dendritic spines, and in several forms of long-term synaptic plasticity. We also aim to present explanation for the mTOR effects on neurons at the level of mTOR-regulated genes and proteins.


Journal of the American Chemical Society | 2008

Organelle-Specific Zinc Detection Using Zinpyr-Labeled Fusion Proteins in Live Cells

Elisa Tomat; Elizabeth M. Nolan; Jacek Jaworski; Stephen J. Lippard

A protein labeling approach is employed for the localization of a zinc-responsive fluorescent probe in the mitochondria and in the Golgi apparatus of living cells. ZP1, a zinc sensor of the Zinpyr family, was functionalized with a benzylguanine moiety and thus converted into a substrate (ZP1BG) for the human DNA repair enzyme alkylguaninetransferase (AGT or SNAP-Tag). The labeling reaction of purified glutathione S-transferase tagged AGT with ZP1BG and the zinc response of the resulting protein-bound sensor were confirmed in vitro. The new detection system, which combines a protein labeling methodology with a zinc fluorescent sensor, was tested in live HeLa cells expressing AGT in specific locations. The enzyme was genetically fused to site-directing proteins that anchor the probe onto targeted organelles. Localization of the zinc sensors in the Golgi apparatus and in the mitochondria was demonstrated by fluorescence microscopy. The protein-bound fluorescence detection system is zinc-responsive in living cells.


Journal of Biological Chemistry | 2007

β-Dystroglycan as a Target for MMP-9, in Response to Enhanced Neuronal Activity

Piotr Michaluk; Lukasz R. Kolodziej; Barbara Mioduszewska; Grzegorz M. Wilczynski; Joanna Dzwonek; Jacek Jaworski; Dariusz C. Górecki; Ole Petter Ottersen; Leszek Kaczmarek

Matrix metalloproteinase-9 has recently emerged as an important molecule in control of extracellular proteolysis in the synaptic plasticity. However, no synaptic targets for its enzymatic activity had been identified before. In this report, we show that β-dystroglycan comprises such a neuronal activity-driven target for matrix metalloproteinase-9. This notion is based on the following observations. (i) Recombinant, autoactivating matrix metalloproteinase-9 produces limited proteolytic cleavage of β-dystroglycan. (ii) In neuronal cultures, β-dystroglycan proteolysis occurs in response to stimulation with either glutamate or bicuculline and is blocked by tissue inhibitor of metalloproteinases-1, a metalloproteinase inhibitor. (iii) β-Dystroglycan degradation is also observed in the hippocampus in vivo in response to seizures but not in the matrix metalloproteinase-9 knock-out mice. (iv) β-Dystroglycan cleavage correlates in time with increased matrix metalloproteinase-9 activity. (v) Finally, β-dystroglycan and matrix metalloproteinase-9 colocalize in postsynaptic elements in the hippocampus. In conclusion, our data identify the β-dystroglycan as a first matrix metalloproteinase-9 substrate digested in response to enhanced synaptic activity. This demonstration may help to understand the possible role of both proteins in neuronal functions, especially in synaptic plasticity, learning, and memory.


Journal of Cell Biology | 2004

The critical role of cyclin D2 in adult neurogenesis

Anna Kowalczyk; Robert K. Filipkowski; Marcin Rylski; Grzegorz M. Wilczynski; Filip A. Konopacki; Jacek Jaworski; Maria A. Ciemerych; Piotr Sicinski; Leszek Kaczmarek

Adult neurogenesis (i.e., proliferation and differentiation of neuronal precursors in the adult brain) is responsible for adding new neurons in the dentate gyrus of the hippocampus and in the olfactory bulb. We describe herein that adult mice mutated in the cell cycle regulatory gene Ccnd2, encoding cyclin D2, lack newly born neurons in both of these brain structures. In contrast, genetic ablation of cyclin D1 does not affect adult neurogenesis. Furthermore, we show that cyclin D2 is the only D-type cyclin (out of D1, D2, and D3) expressed in dividing cells derived from neuronal precursors present in the adult hippocampus. In contrast, all three cyclin D mRNAs are present in the cultures derived from 5-day-old hippocampi, when developmental neurogenesis in the dentate gyrus takes place. Thus, our results reveal the existence of molecular mechanisms discriminating adult versus developmental neurogeneses.


Biological Psychiatry | 2007

TIMP-1 Abolishes MMP-9-Dependent Long-lasting Long-term Potentiation in the Prefrontal Cortex

Pawel Okulski; Thérèse M. Jay; Jacek Jaworski; Kamila Duniec; Joanna Dzwonek; Filip A. Konopacki; Grzegorz M. Wilczynski; Amelia Sánchez-Capelo; Jacques Mallet; Leszek Kaczmarek

BACKGROUND Understanding of the molecular mechanisms of prefrontal cortex (PFC) plasticity is important for developing new treatment strategies for mental disorders such as depression and schizophrenia. Long-term potentiation (LTP) is a valid model for synaptic plasticity. The extracellular proteolytic system composed of matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs) has recently been shown to play major role in the hippocampal plasticity. METHODS We tested whether induction of hippocampal-prefrontal LTP results in accumulation of tissue inhibitor of MMP-1, TIMP-1 mRNA, in the PFC of rats and whether adenovirally driven overexpression of TIMP-1 affects LTP. Additional study of slices was done with a specific MMP-9 inhibitor. RESULTS The TIMP-1 is induced in the rat medial PFC by stimuli evoking late LTP; its overexpression blocks the gelatinolytic activity of the MMP family; its overexpression before tetanization blocks late LTP in vivo; and MMP-9 inhibitor prevents late LTP in vitro. CONCLUSIONS We suggest a novel extracellular mechanism of late LTP in the PFC, engaging TIMP-1-controlled proteolysis as an element of information integration. Our results may also be meaningful to an understanding of mental diseases and development of new treatment strategies that are based on extracellular mechanisms of synaptic plasticity.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Functional anatomy of neural circuits regulating fear and extinction

Ewelina Knapska; Matylda Macias; M Mikosz; Aleksandra Nowak; Dorota Owczarek; Marcin Wawrzyniak; Marcelina Pieprzyk; Iwona A. Cymerman; Tomasz Werka; Morgan Sheng; Stephen Maren; Jacek Jaworski; Leszek Kaczmarek

The memory of fear extinction is context dependent: fear that is suppressed in one context readily renews in another. Understanding of the underlying neuronal circuits is, therefore, of considerable clinical relevance for anxiety disorders. Prefrontal cortical and hippocampal inputs to the amygdala have recently been shown to regulate the retrieval of fear memories, but the cellular organization of these projections remains unclear. By using anterograde tracing in a transgenic rat in which neurons express a dendritically-targeted PSD-95:Venus fusion protein under the control of a c-fos promoter, we found that, during the retrieval of extinction memory, the dominant input to active neurons in the lateral amygdala was from the infralimbic cortex, whereas the retrieval of fear memory was associated with greater hippocampal and prelimbic inputs. This pattern of retrieval-related afferent input was absent in the central nucleus of the amygdala. Our data show functional anatomy of neural circuits regulating fear and extinction, providing a framework for therapeutic manipulations of these circuits.


Genome Biology | 2010

The dissection of transcriptional modules regulated by various drugs of abuse in the mouse striatum

Marcin Piechota; Michal Korostynski; Wojciech Solecki; Agnieszka Gieryk; Michal Slezak; Wiktor Bilecki; Barbara Ziółkowska; Elzbieta Kostrzewa; Iwona A. Cymerman; Lukasz Swiech; Jacek Jaworski; Ryszard Przewlocki

BackgroundVarious drugs of abuse activate intracellular pathways in the brain reward system. These pathways regulate the expression of genes that are essential to the development of addiction. To reveal genes common and distinct for different classes of drugs of abuse, we compared the effects of nicotine, ethanol, cocaine, morphine, heroin and methamphetamine on gene expression profiles in the mouse striatum.ResultsWe applied whole-genome microarray profiling to evaluate detailed time-courses (1, 2, 4 and 8 hours) of transcriptome alterations following acute drug administration in mice. We identified 42 drug-responsive genes that were segregated into two main transcriptional modules. The first module consisted of activity-dependent transcripts (including Fos and Npas4), which are induced by psychostimulants and opioids. The second group of genes (including Fkbp5 and S3-12), which are controlled, in part, by the release of steroid hormones, was strongly activated by ethanol and opioids. Using pharmacological tools, we were able to inhibit the induction of particular modules of drug-related genomic profiles. We selected a subset of genes for validation by in situ hybridization and quantitative PCR. We also showed that knockdown of the drug-responsive genes Sgk1 and Tsc22d3 resulted in alterations to dendritic spines in mice, possibly reflecting an altered potential for plastic changes.ConclusionsOur study identified modules of drug-induced genes that share functional relationships. These genes may play a critical role in the early stages of addiction.

Collaboration


Dive into the Jacek Jaworski's collaboration.

Top Co-Authors

Avatar

Leszek Kaczmarek

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Lippard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Grzegorz M. Wilczynski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Elizabeth M. Nolan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joanna Dzwonek

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Izabela Figiel

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Kotulska

Medical University of Silesia

View shared research outputs
Top Co-Authors

Avatar

Anna Konopka

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Hubert Dolezyczek

Nencki Institute of Experimental Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge