Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacek Zebrowski is active.

Publication


Featured researches published by Jacek Zebrowski.


Biotechnology Progress | 2007

Engineering of PHB Synthesis Causes Improved Elastic Properties of Flax Fibers

Magdalena Wróbel-Kwiatkowska; Jacek Zebrowski; Michal Starzycki; Jan Oszmiański; Jan Szopa

Flax stem is a source of fiber used by the textile industry. Flax fibers are separated from other parts of stems in the process called retting and are probably the first plant fibers used by man for textile purposes ( 1 ). Nowadays flax cultivation is often limited because of its lower elastic property compared to cotton fibers. Thus the goal of this study was to increase the flax fiber quality using a transgenic approach. Expression of three bacterial genes coding for β‐ketothiolase ( phb A), acetoacetyl‐CoA reductase ( phb B), and PHB synthase ( phb C) resulted in poly‐β‐hydroxybutyrate (PHB) accumulation in the plant stem. PHB is known as a biodegradable thermoplastic displaying chemical and physical properties similar to those of conventional plastics (i.e., polypropylene). The fibers isolated from transgenic flax plants cultivated in the field and synthesizing PHB were then studied for biomechanical properties. All measured parameters, strength, Youngapos;s modulus, and energy for failure of flax fibers, were significantly increased. Thus the substantial improvement in elastic properties of fibers from the transgenic line has been achieved. Since the acetyl CoA, substrate for PHB synthesis, is involved not only for energy production but also for synthesis of many cellular constituents, the goal of this study was also the analysis of those metabolites, which interfere with plant physiology and thus fiber quality. The analyzed plants showed that reduction in lignin, pectin, and hemicellulose levels resulted in increased retting efficiency. A significant increase in phenolic acids was also detected, and this was the reason for improved plant resistance to pathogen infection. However, a slight decrease in crop production was detected.


Chemico-Biological Interactions | 2014

Nanodiamond-mediated impairment of nucleolar activity is accompanied by oxidative stress and DNMT2 upregulation in human cervical carcinoma cells

Jennifer Mytych; Anna Lewinska; Anna Bielak-Zmijewska; Wioleta Grabowska; Jacek Zebrowski; Maciej Wnuk

Because applications of nanomaterials in nanomedicine and nanotechnology are rapidly increasing, nanodiamond (ND) health risk assessment is urgently needed. In the present study, we used HeLa cell model to evaluate nanodiamond biocompatibility. We found ND-mediated cytotoxicity, proliferation inhibition and oxidative stress. Conversely, ND-associated genotoxicity was limited to higher concentrations used. Nanodiamond was also recognized as a hypermethylating agent. ND-associated redox imbalance contributed to nucleolar stress: size and number of nucleoli were affected, and release of nucleolar protein RRN3 occurred. Surprisingly, we did not observe stress-induced RNA depletion. In contrast, RNA was stabilized: total RNA level and integrity (28S/18S rRNA ratio) were unaffected. After nanodiamond treatment, upregulation of DNA methyltransferase 2 (DNMT2) was shown. Perhaps, DNMT2, as a part of the regulatory loop of metabolic pathways through RNA methylation, may contribute to RNA stabilization and confer stress resistance after nanodiamond treatment. In conclusion, using HeLa cell model, we showed that ND biocompatibility is limited and special care should be taken when introducing ND-based biomaterials to biological systems.


BMC Plant Biology | 2014

Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties.

Marta Preisner; Anna Kulma; Jacek Zebrowski; Lucyna Dymińska; J. Hanuza; Malgorzata Arendt; Michal Starzycki; Jan Szopa

BackgroundIn recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production).Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants.ResultsTwo studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting.ConclusionThe major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and organization of cellulose and pectin. However, to conclude that all observed changes are trustworthy and correlated exclusively to CAD repression, further analysis of the modified plants genome is necessary. Secondly, this is one of the first studies on the crop from the low-lignin plants from the field trail which demonstrates that such plants could be successfully cultivated in a field.


Molecules | 2015

Fatty Acid Profile and Biological Activities of Linseed and Rapeseed Oils

Anna Lewinska; Jacek Zebrowski; Magdalena Duda; Anna Górka; Maciej Wnuk

It has been postulated that fatty acids found in edible oils may exert beneficial health effects by the modulation of signaling pathways regulating cell differentiation and proliferation, especially in the treatment of cardiovascular diseases. In the present study, the biological effects of selected edible oils—linseed (LO) and rapeseed (RO) oils—were tested in vitro on fibroblast cells. The fatty acid profile of the oils was determined using gas chromatography and FTIR spectroscopy. LO was found to be rich in α-linolenic acid (ALA), whereas oleic acid was the most abundant species in RO. Fatty acids were taken up by the cells and promoted cell proliferation. No oxidative stress-mediated cytotoxic or genotoxic effects were observed after oil stimulation. Oils ameliorated the process of wound healing as judged by improved migration of fibroblasts to the wounding area. As ALA-rich LO exhibited the most potent wound healing activity, ALA may be considered a candidate for promoting the observed effect.


Biochemical and Biophysical Research Communications | 2014

The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

Aleksandra Kwiatkowska; Jacek Zebrowski; Bernadetta Oklejewicz; Justyna Czarnik; Joanna Halibart-Puzio; Maciej Wnuk

Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.


BioMed Research International | 2015

Gold Nanoparticles Promote Oxidant-Mediated Activation of NF-κB and 53BP1 Recruitment-Based Adaptive Response in Human Astrocytes

Jennifer Mytych; Anna Lewinska; Jacek Zebrowski; Maciej Wnuk

Nanogold-based materials are promising candidate tools for nanobased medicine. Nevertheless, no conclusive information on their cytotoxicity is available. In the present study, we investigated the effects of gold nanoparticles (AuNPs) on human astrocytes in vitro. Nanogold treatment in a wide range of concentrations did not result in cytotoxicity. In contrast, nanogold provoked changes in the astrocyte cell cycle and induced senescence-associated β-galactosidase activity. AuNPs promoted oxidative stress and caused activation of NF-κB pathway. After nanogold treatment, an inverse correlation between the formation of 53BP1 foci and micronuclei generation was observed. The robust 53BP1 recruitment resulted in reduced micronuclei production. Thus, nanogold treatment stimulated an adaptive response in a human astrocyte cell.


International Journal of Pharmaceutics | 2016

Cytotoxic and cytostatic side effects of chitosan nanoparticles as a non-viral gene carrier

Gizem Bor; Jennifer Mytych; Jacek Zebrowski; Maciej Wnuk; Gülşah Şanlı-Mohamed

Although chitosan nanoparticles (CNs) became a promising tool for several biological and medical applications owing to their inherent biocompatibility and biodegradability features, studies regarding their effects on cytotoxic and cytostatic properties still remain insufficient. Therefore, in the present study, we decided to perform comprehensive analysis of the interactions between CNs-pKindling-Red-Mito (pDNA) and different cell line models derived from blood system and human solid tissues cancers. The resulting CNs-pDNA was investigated in terms of their cellular uptake, transfection efficiency, and physico-chemical, cytotoxic and cytostatic properties. The nanoparticles showed high encapsulation efficiency and physical stability for various formulations even after two days time period. Moreover, high gene expression levels were observed after 96h of transfection. CNs-pDNA treatment, despite the absence of oxidative stress induction, caused cell cycle arrest in G0/G1 phase and as a consequence led to premature senescence which turned out to be both p21-dependent and p21-independent. Also, observed DNMT2 upregulation may suggest the activation of different pathways protecting from the results of CNs-mediated stress. In conclusion, treatment of different cell lines with CNs-pDNA showed that their biocompatibility was limited and the effects were cell type-dependent.


Connective Tissue Research | 2015

Antlerogenic stem cells: molecular features and potential in rabbit bone regeneration

Natalia Dąbrowska; Zdzisław Kiełbowicz; Wojciech Nowacki; Joanna Bajzert; Paweł Reichert; J. Bieżyński; Jacek Zebrowski; Katarzyna Haczkiewicz; Marek Cegielski

ABSTRACT Aim: (i) To assess the expression profiles of stem cell-associated markers including Oct4, Sox2, Klf4, Nanog, C-myc, Stat3 and Cd9, (ii) analyze the nanotopography of the MIC-1 stem cells and (iii) evaluate the efficiency of live stem cell implants and stem cell culture derivatives on the regeneration of bone deficiencies in rabbit mandibles. Materials and methods: The expression profiles of stem cell-associated genes, including Oct4, Sox2, Klf4, Nanog, C-myc, Stat3 and CD9 were assessed using reverse transcription polymerase chain reaction and flow cytometry. Nanotopography of the antlerogenic MIC-1 cell lineage was analyzed using atomic force microscopy. The effect of MIC-1 stem cells, their homogenate and supernatant on the regeneration of bone deficiencies in rabbit mandibles was evaluated using histological analysis. The effect of MIC-1 stem cells and stem cell-based derivatives on the immune responses of the animals was assessed by analyses of acute phase protein levels (haptoglobin and fibrinogen). Results: We found that the MIC-1 cells isolated from the apical regions of growing antlers exhibited molecular features that were characteristics of pluripotent stem cells. Using atomic force microscopy, we determined the details of the cell surface morphologies with a particular emphasis on the patterns of formation of plasma extensions for interlinking adjacent cells. We also demonstrated that not only implanted stem cells but also cell homogenates and cell post-culture supernatants have potential in the regeneration of bone deficiencies in the rabbit mandible. Conclusions: Our findings indicate that the use of both antlerogenic stem cell implants and the preparations derived from the cells offer alternative approaches to those based on autologous stem cells in the biological stimulation of osteogenesis and in bone regeneration.


Biogerontology | 2018

Cell wall biosynthesis impairment affects the budding lifespan of the Saccharomyces cerevisiae yeast

Mateusz Molon; Olga Woznicka; Jacek Zebrowski

The Saccharomyces cerevisiae yeast is one of the most widely used model in studies of cellular and organismal biology, including as aging and proliferation. Although several constraints of aging and budding lifespan have been identified, these processes have not yet been fully understood. Previous studies of aging in yeast have focused mostly on the molecular basics of the underlying mechanisms, while physical aspects, particularly those related to the cell wall, were rather neglected. In this paper, we examine for the first time, to our knowledge, the impact of cell wall biosynthesis disturbances on the lifespan in the budding yeast. We have used a set of cell wall mutants, including knr4Δ, cts1Δ, chs3Δ, fks1Δ and mnn9Δ, which affect biosynthesis of all major cell wall compounds. Our results indicated that impairment of chitin biosynthesis and cell wall protein mannosylation reduced the budding lifespan, while disruption in the 1,3-β-glucan synthase activity had no adverse effect on that parameter. The impact varied in the severity and the most notable effect was observed for the mnn9Δ mutant. What was interesting, in the case of the dysfunction of the Knr4 protein playing the role of the transcriptional regulator of cell wall chitin and glucan synthesis, the lifespan increased significantly. We also report the phenotypic characteristics of cell wall-associated mutants as revealed by imaging of the cell wall using transmission electron microscopy, scanning electron microscopy and atomic force microscopy. In addition, our findings support the conviction that achievement of the state of hypertrophy may not be the only factor that determines the budding lifespan.


Frontiers in Plant Science | 2017

Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition

Anna Podgórska; Maria Burian; Katarzyna Gieczewska; Monika Ostaszewska-Bugajska; Jacek Zebrowski; Danuta Solecka; Bożena Szal

Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3–) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as “ammonium toxicity syndrome.” NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension.

Collaboration


Dive into the Jacek Zebrowski's collaboration.

Top Co-Authors

Avatar

Anna Lewinska

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jan Szopa

University of Wrocław

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Kulma

University of Wrocław

View shared research outputs
Top Co-Authors

Avatar

J. Hanuza

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jan Oszmiański

Wroclaw University of Environmental and Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Lucyna Dymińska

Wrocław University of Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Bielak-Zmijewska

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge