Jacinta E. Browne
Dublin Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacinta E. Browne.
Ultrasound in Medicine and Biology | 2003
Jacinta E. Browne; Kumar V. Ramnarine; Amanda J. Watson; Peter R. Hoskins
Ultrasound (US) test phantoms incorporating tissue-mimicking materials (TMMs) play an important role in the quality control (QC) and performance testing of US equipment. Three commercially available TMMs (Zerdine from CIRS Inc.; condensed-milk-based gel from Gammex RMI; urethane-rubber-based from ATS Labs) and a noncommercial agar-based TMM, were investigated. Acoustic properties were measured over the frequency range 2.25 to 15 MHz at a range of ambient temperatures (10 to 35 degrees C). The acoustic velocity of the TMMs remained relatively constant with increasing frequency. Only the agar-based TMM had a linear increase of attenuation with frequency, with the other materials exhibiting nonlinear responses to varying degrees (f(1.08) to f(1.83)). The acoustic velocity and attenuation coefficient of all the TMMs varied with temperature, with the urethane-rubber TMM showing the greatest variation of +/- 1.2% for acoustic velocity and +/- 12% for attenuation coefficient. The data obtained in this study highlight the importance of greater knowledge of the acoustic behavior of TMMs to variations in both frequency and temperature, to ensure that accurate and precise measurements are obtained during QC and performance testing.
Ultrasound in Medicine and Biology | 2011
Deirdre M. King; Carmel Moran; John D. McNamara; Andrew J. Fagan; Jacinta E. Browne
Polyvinyl alcohol cryogel (PVA-C) is presented as a vessel-mimicking material for use in anatomically realistic Doppler flow phantoms. Three different batches of 10% wt PVA-C containing (i) PVA-C alone, (ii) PVA-C with antibacterial agent and (iii) PVA-C with silicon carbide particles were produced, each with 1-6 freeze-thaw cycles. The resulting PVA-C samples were characterized acoustically (over a range 2.65 to 10.5 MHz) and mechanically to determine the optimum mixture and preparation for mimicking the properties of healthy and diseased arteries found in vivo. This optimum mix was reached with the PVA-C with antibacterial agent sample, prepared after two freeze/thaw cycles, which achieved a speed of sound of 1538 ± 5 m s(-1) and a Youngs elastic modulus of 79 ± 11 kPa. This material was used to make a range of anatomically realistic flow phantoms with varying degrees of stenoses, and subsequent flow experiments revealed that higher degrees of stenoses and higher velocities could be achieved without phantom rupturing compared with a phantom containing conventional wall-less vessels.
Ultrasound in Medicine and Biology | 2012
Chao Sun; Stephen D. Pye; Jacinta E. Browne; Anna Janeczko; Bill Ellis; Mairead Butler; Vassilis Sboros; Adrian Thomson; Mp Brewin; Charles H. Earnshaw; Carmel Moran
This study characterized the acoustic properties of an International Electromechanical Commission (IEC) agar-based tissue mimicking material (TMM) at ultrasound frequencies in the range 10–47 MHz. A broadband reflection substitution technique was employed using two independent systems at 21°C ± 1°C. Using a commercially available preclinical ultrasound scanner and a scanning acoustic macroscope, the measured speeds of sound were 1547.4 ± 1.4 m∙s−1 and 1548.0 ± 6.1 m∙s−1, respectively, and were approximately constant over the frequency range. The measured attenuation (dB∙cm−1) was found to vary with frequency f (MHz) as 0.40f + 0.0076f2. Using this polynomial equation and extrapolating to lower frequencies give values comparable to those published at lower frequencies and can estimate the attenuation of this TMM in the frequency range up to 47 MHz. This characterisation enhances understanding in the use of this TMM as a tissue equivalent material for high frequency ultrasound applications.
Physiological Measurement | 2000
Jacinta E. Browne; Neil O'Hare
A force platform is a technical method of quantitatively assessing balance indirectly. The use of force platforms in physiotherapy departments has become more prominent over the last few years. However, the main drawback in the use of force platforms is the lack of comprehensive calibration procedures, which casts doubt on the results obtained with these systems. Existing calibration tests are limited to testing the spatial accuracy of the force platform. This paper describes a comprehensive quality control test procedure which was developed. It is proposed that the developed quality control test procedure could be used to test all types of force platform and it includes a description of how the tests should be carried out, the frequency with which they should be carried out and the expected performance for each of the tests as recommended for the most part by the Association Francaise de Posturologie.
Ultrasound in Medicine and Biology | 2011
Louise M. Cannon; Andrew J. Fagan; Jacinta E. Browne
The development and acoustical characterisation of a range of novel agar-based tissue mimicking material (TMMs) for use in clinically relevant, quality assurance (QA) and anthropomorphic breast phantoms are presented. The novel agar-based TMMs described in this study are based on a comprehensive, systematic variation of the ingredients in the International Electrotechnical Commission (IEC) TMM. A novel, solid fat-mimicking material was also developed and acoustically characterised. Acoustical characterisation was carried out using an in-house scanning acoustic macroscope at low (7.5 MHz) and high frequencies (20 MHz), using the pulse-echo insertion technique. The speeds of sound range from 1490 to 1570 m. s(-1), attenuation coefficients range from 0.1 to 0.9 dB. cm(‑1). MHz(-1) and relative backscatter ranges from 0 to -20 dB. It was determined that tissues can be mimicked in terms of independently controllable speeds of sound and attenuation coefficients. These properties make these novel TMMs suitable for use in clinically relevant QA and anthropomorphic phantoms and would potentially be useful for other high frequency applications such as intravascular and small animal imaging.
Physiological Measurement | 2000
Jacinta E. Browne; Neil O'Hare
Balance is the ability to maintain equilibrium while sitting or standing. There are a number of different methods which are used to assess balance: technical methods such as sway magnetometry, ataxia meter and force platforms, and clinical methods such as the functional reach test, Berg balance test and fall risk index. The most frequently used technical method is the force platform. There are two types of force platform, a static and a dynamic force platform, of which the dynamic force platform has been found to be more sensitive to detect impaired balance. The quantitative posturography system (QPS) described in this paper is a type of dynamic force platform; however, it has a simpler design than the currently available dynamic force platforms and can match the subjects sway exactly for tilting in the anterio-posterior and medio-lateral directions with its novel design. This paper describes the novel design of the QPS and its calibration.
Physica Medica | 2014
Jacinta E. Browne
In this paper, an overview of Doppler ultrasound quality assurance (QA) testing will be presented in three sections. The first section will review the different Doppler ultrasound parameters recommended by professional bodies for use in QA protocols. The second section will include an evaluation and critique of the main test devices used to assess Doppler performance, while the final section of this paper will discuss which of the wide range of test devices have been found to be most suitable for inclusion in Doppler QA programmes. Pulsed Wave Spectral Doppler, Colour Doppler Imaging QA test protocols have been recommended over the years by various professional bodies, including the UKs Institute of Physics and Engineering in Medicine (IPEM), the American Institute for Ultrasound in Medicine (AIUM), and the International Electrotechnical Commission (IEC). However, despite the existence of such recommended test protocols, very few commercial or research test devices exist which can measure the full range of both PW Doppler ultrasound and colour Doppler imaging performance parameters, particularly quality control measurements such as: (i) Doppler sensitivity (ii) colour Doppler spatial resolution (iii) colour Doppler temporal resolution (iv) colour Doppler velocity resolution (v) clutter filter performance and (vi) tissue movement artefact suppression. In this review, the merits of the various commercial and research test devices will be considered and a summary of results obtained from published studies which have made use of some of these Doppler test devices, such as the flow, string, rotating and belt phantom, will be presented.
IEEE Transactions on Antennas and Propagation | 2013
Domenico Gaetano; Patrick McEvoy; Max J. Ammann; Jacinta E. Browne; Louise Keating; Frances Horgan
Antennas designed to link footwear sensors within body centric networks are introduced with two small UWB antennas, one directional and another quasi-omnidirectional. The radiating characteristics are evaluated for three positions on a sample sports shoe using a detailed simulation model and measurements with a homogenous foot phantom. Antenna performance is assessed for resilience to close proximity loading by the footwear materials and the phantom foot.
Ultrasound in Medicine and Biology | 2010
Deirdre M. King; Michael Ring; Carmel Moran; Jacinta E. Browne
Computer-aided modelling techniques were used to generate a range of anatomically realistic phantoms of the renal artery from medical images of a 64-slice CT data set acquired from a healthy volunteer. From these data, models of a normal healthy renal artery and diseased renal arteries with 30%, 50%, 70% and 85% stenoses were generated. Investment casting techniques and a low melting point alloy were used to create the vessels with varying degrees of stenosis. The use of novel inserts significantly reduced the time, materials and cost required in the fabrication of these anatomically realistic phantoms. To prevent residual metal remaining in the final phantom lumens a technique employing clingfilm was used to remove all molten metal from the lumen. These novel flow phantoms developed using efficient methods for producing vessels with various degrees of stenosis can provide a means of evaluation of current and emerging ultrasound technology.
Ultrasound | 2012
Seán Cournane; Andrew J. Fagan; Jacinta E. Browne
While the rapid development of ultrasound elastography techniques in recent decades has sparked its prompt implementation in the clinical setting adding new diagnostic information to conventional imaging techniques, questions still remain as to its full potential and efficacy in the hospital environment. A limited number of technical studies have objectively assessed the full capabilities of the different elastography approaches, perhaps due, in part, to the scarcity of suitable tissue-mimicking materials (TMMs) and appropriately designed phantoms available. Few commercially available elastography phantoms possess the necessary test target characteristics or mechanical properties observed clinically, or indeed reflect the lesion-to-background elasticity ratio encountered during clinical scanning. Thus, while some phantoms may prove useful, they may not fully challenge the capabilities of the different elastography techniques, proving limited when it comes to quality control (QC) and/or training purposes. Although a variety of elastography TMMs, such as agar and gelatine dispersions, co-polymer in oil and poly(vinyl) alcohol cryogel, have been developed for specific research purposes, such work is yet to produce appropriately designed phantoms to adequately challenge the variety of current commercially available elastography applications. Accordingly, there is a clear need for the further development of elastography TMMs and phantoms to keep pace with the rapid developments in elastography technology, to ensure that the performance of these new diagnostic approaches are validated, and for clinical training purposes.