Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack G. Zhou is active.

Publication


Featured researches published by Jack G. Zhou.


IEEE Design & Test of Computers | 2007

Chemical and Biological Applications of Digital-Microfluidic Devices

Richard B. Fair; Andrey Khlystov; Tina D. Tailor; V. Ivanov; Randall Evans; Peter B. Griffin; Vijay Srinivasan; Vamsee K. Pamula; Michael G. Pollack; Jack G. Zhou

Digital-microfluidic lab-on-a chip (LoC) technology offers a platform for developing diagnostic applications with the advantages of portability, sample and reagent volume reduction, faster analysis, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. In addition to diagnostics, digital microfluidics is finding use in airborne chemical detection, DNA sequencing by synthesis, and tissue engineering. In this article, we review efforts to develop various LoC applications using electrowetting-based digital microfluidics. We describe these applications, their implementation, and associated design issues.


Biomaterials | 2011

Fluorescent PLLA-nanodiamond composites for bone tissue engineering.

Qingwei Zhang; Vadym Mochalin; Ioannis Neitzel; Isabel Knoke; Jingjia Han; Christopher A. Klug; Jack G. Zhou; Peter I. Lelkes; Yury Gogotsi

Superior mechanical properties, rich surface chemistry, and good biocompatibility of diamond nanoparticles make them attractive in biomaterial applications. A multifunctional fluorescent composite bone scaffold material has been produced utilizing a biodegradable polymer, poly(l-lactic acid) (PLLA), and octadecylamine-functionalized nanodiamond (ND-ODA). The uniform dispersion of nanoparticles in the polymer led to significant increase in hardness and Youngs modulus of the composites. Addition of 10%wt of ND-ODA resulted in more than 200% increase in Youngs modulus and 800% increase in hardness, bringing the nanocomposite properties close to that of the human cortical bone. Testing of ND-ODA/PLLA as a matrix supporting murine osteoblast (7F2) cell growth for up to 1 week showed that the addition of ND-ODA had no negative effects on cell proliferation. ND-ODA serves as a multifunctional additive providing improved mechanical properties, bright fluorescence, and options for drug loading and delivery via surface modification. Thus ND-ODA/PLLA composites open up numerous avenues for their use as components of bone scaffolds and smart surgical tools such as fixation devices in musculoskeletal tissue engineering and regenerative medicine. Intense fluorescence of ND-ODA/PLLA scaffolds can be used to monitor bone re-growth replacing the implant in vivo.


International Journal of Machine Tools & Manufacture | 2000

PARAMETRIC PROCESS OPTIMIZATION TO IMPROVE THE ACCURACY OF RAPID PROTOTYPED STEREOLITHOGRAPHY PARTS

Jack G. Zhou; Daniel Herscovici; Calvin C. Chen

The functional requirements of a rapid prototyping system are speed and accuracy, and they are both functions of vendor defaulted and user selected manufacturing parameters. Accuracy is evaluated by dimensional errors, form errors and surface roughness of manufactured parts. A specially designed specimen with 20 dimensional, geometrical, and surface roughness features has been used in the inspection of RP manufacturing processes. In terms of Taguchi experimental design techniques, an orthogonal array of experiments has been developed which has the least number of experimental runs and desired process parameter settings. Using a 3-D coordinate measuring machine and surface profilometer, a series of measurements in evaluating the SLA parts quality has been conducted to find the functional relationships between the output part quality and input manufacturing process parameters. Two analysis tools, response surface methodology and Analysis of Variance (ANOVA), have been used to evaluate the SLA RP process and to perform the product optimization. The optimal setups of SLA manufacturing parameters for both individual features and a general part with various features have been concluded from this study.


Biomaterials | 2012

Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering.

Qingwei Zhang; Vadym Mochalin; Ioannis Neitzel; Kavan Hazeli; Jun Jie Niu; Antonios Kontsos; Jack G. Zhou; Peter I. Lelkes; Yury Gogotsi

Multifunctional bone scaffold materials have been produced from a biodegradable polymer, poly(L-lactic acid) (PLLA), and 1-10% wt of octadecylamine-functionalized nanodiamond (ND-ODA) via solution casting followed by compression molding. By comparison to pure PLLA, the addition of 10% wt of ND-ODA resulted in a significant improvement of the mechanical properties of the composite matrix, including a 280% increase in the strain at failure and a 310% increase in fracture energy in tensile tests. The biomimetic process of bonelike apatite growth on the ND-ODA/PLLA scaffolds was studied using microscopic and spectroscopic techniques. The enhanced mechanical properties and the increased mineralization capability with higher ND-ODA concentration suggest that these biodegradable composites may potentially be useful for a variety of biomedical applications, including scaffolds for orthopedic regenerative engineering.


Journal of Biomedical Materials Research Part B | 2015

In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy

Haibo Gong; Kun Wang; Randy Strich; Jack G. Zhou

Zinc-Magnesium (Zn-Mg) alloy as a novel biodegradable metal holds great potential in biodegradable implant applications as it is more corrosion resistant than Magnesium (Mg). However, the mechanical properties, biodegradation uniformity, and cytotoxicity of Zn-Mg alloy remained as concerns. In this study, hot extrusion process was applied to Zn-1 wt % Mg (Zn-1Mg) to refine its microstructure. Effects of hot extrusion on biodegradation behavior and mechanical properties of Zn-1Mg were investigated in comparison with Mg rare earth element alloy WE43. Metallurgical analysis revealed significant grain size reduction, and immersion test found that corrosion rates of WE43 and Zn-1Mg were reduced by 35% and 57%, respectively after extrusion. Moreover, hot extrusion resulted in a much more uniform biodegradation in extruded Zn-1Mg alloy and WE43. In vitro cytotoxicity test results indicated that Zn-1Mg alloy was biocompatible. Therefore, hot extruded Zn-1Mg with homogenous microstructure, uniform as well as slow degradation, improved mechanical properties, and good biocompatibility was believed to be an excellent candidate material for load-bearing biodegradable implant application.


Biomacromolecules | 2009

Controllable Growth of Gradient Porous Structures

Donggang Yao; Wei Zhang; Jack G. Zhou

Cocontinuous phase structures of immiscible polymers can be developed under appropriate melt-blending conditions. Because of the presence of interfacial tension, such cocontinuous structures start to coarsen when heated to a temperature higher than the melting/softening temperature of both phases. In this study, a method for controllable growth of gradient porous structures utilizing variable coarsening rates in a gradient temperature field was investigated. The phase structure coarsens at a higher rate in higher temperature regions but at a slower rate in lower temperature regions, resulting in the generation of a gradient phase morphology. Subsequent dissolution of one phase in the binary blend yields a gradient porous structure made of the remaining polymer component. A polystyrene/poly(lactic acid) (PLA) blend was used as a model system. By designing proper thermal boundary conditions and introducing different thermal gradients during annealing, different types of gradient porous structures of PLA were created.


Virtual and Physical Prototyping | 2016

Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials

Steven K. Leist; Jack G. Zhou

ABSTRACT The onset of multi-material 3D printing and the combination of smart materials into the printable material has led to the development of an exciting new technology called 4D printing. This paper will introduce the background and development into 4D printing, discuss water reactive 4D printing methods and temperature reactive 4D printing, modelling and simulation software, and future applications of this new technology. Smart materials that react to different external stimuli are described, along with the benefits of these smart materials and their potential use in 4D printing applications; specifically, existing light-reactive smart materials. 4D printing has the prospective to simplify the design and manufacturing of different products and the potential of automating actuation devices that naturally react to their environment without the need for human interaction, batteries, processors, sensors, and motors.


Fractals | 1998

Fractal Analysis of Height Distributions of Anisotropic Rough Surfaces

Denis Blackmore; Jack G. Zhou

A general distribution function for the heights of anisotropic engineering surfaces is obtained by extending earlier work on surface profiles. The derivation starts from a functional description of surface heights that involves fractal quantities and is comprehensive enough to include almost all of the mathematical models for surface topography that have appeared in the literature. It is found that the distribution is in the form of a Gaussian function multiplied by a convergent power series, and the terms in the series depend in a fundamental way on the fractal parameters of the surface. This distribution is used to predict the dependence of bearing-area on fractal parameters, and is compared with other approaches to anisotropic surfaces in the literature. Two truncated approximate versions of the distribution function are introduced in order to test the theoretical model against experimentally obtained distributions of engineering surfaces; the results show good agreement between theory and experiment.


Virtual and Physical Prototyping | 2007

Electrowetting-based multi-microfluidics array printing of high resolution tissue construct with embedded cells and growth factors

Jack G. Zhou; Lin Lu; Kalyan Byrapogu; David M. Wootton; Peter I. Lelkes; Richard B. Fair

To overcome limitations of current tissue fabrication methods, explore new biocompatible materials, and develop new biomimetic manufacturing process for soft tissue, we are developing a new technology, electrowetting-based microfluidics array printing, which will be used in a solid freeform fabrication (SFF) system to meet the challenges of high resolution manufacture of hydrogel scaffolds with dimension scale less than 10 µm, cell placement, growth factor delivery, and vascularization for soft tissue engineering. Preliminary work has been done on the biomaterials research, electrowetting printing, biomimetic modeling, scaffold fabrication, and system integration and control. This research is the first application of electrowetting on dielectric to tissue engineering and dispensing hydrogels.


Siam Journal on Applied Mathematics | 1996

A general fractal distribution function for rough surface profiles

Denis Blackmore; Jack G. Zhou

Starting with a very general functional description, involving fractal parameters, of the height along a given line on a rough surface, a distribution function for the corresponding surface profile is derived. This distribution is found to differ from Gaussian form by a convergent power series and to be directly dependent on two fractal parameters: the fractal dimension and topothesy. It is shown how the distribution function can be used to determine the effects of varying the fractal parameters on the height of the bearing-area curve (a standard measure of surface roughness). By truncating the series representation for the distribution function for the surface profiles, two approximate models for the height distribution are obtained. These models are shown to compare favorably with experimentally obtained distributions.

Collaboration


Dive into the Jack G. Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donggang Yao

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge