Parkson Lee-Gau Chong
Temple University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Parkson Lee-Gau Chong.
The FASEB Journal | 2009
Robert C. Scott; Jenna M. Rosano; Zhanna Ivanov; Bin Wang; Parkson Lee-Gau Chong; Andrew C. Issekutz; Deborah L. Crabbe; Mohammad F. Kiani
Recent attempts at rebuilding the myocardium using stem cells have yielded disappointing results. The lack of a supporting vasculature may, in part, explain these disappointing findings. However, concerns over possible side effects have hampered attempts at revascularizing the infarcted myocardium using systemic delivery of proangiogenic compounds. In this study, we develop the technology to enhance the morphology and function of postinfarct neovasculature. Previously, we have shown that the up‐regulated expression of endothelial cell adhesion molecules in the myocardial infarction (MI) region provides a potential avenue for selectively targeting drugs to infarcted tissue. After treatment with anti‐P‐selectin‐conjugated liposomes containing vascular endothelial growth factor (VEGF), changes in cardiac function and vasculature post‐MI were quantified in a rat MI model. Targeted delivery of VEGF to post‐MI tissue resulted in significant increase in fractional shortening and improved systolic function. These functional improvements were accompanied by a 21% increase in the number of anatomical vessels and a 74% increase in the number of perfused vessels in the MI region of treated animals. No significant improvements in cardiac function were observed in untreated, systemic VEGF‐treated, nontargeted liposome‐treated, or blank immunoliposome‐treated animals. Targeted delivery of low doses of proangiogenic compounds to post‐MI tissue results in significant improvements in cardiac function and vascular structure.—Scott, R. C., Rosano, J. M., Ivanov, Z., Wang, B., Lee‐Gau Chong, P., Issekutz, I. C., Crabbe, D. L., Kiani, M. F. Targeting VEGF‐encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J. 23, 3361–3367 (2009). www.fasebj.org
Chemistry and Physics of Lipids | 2000
Jerome L. Gabriel; Parkson Lee-Gau Chong
Membranes composed of glycerol dialkylnonitol tetraether (GDNT) lipids from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius have been studied by molecular modeling. GDNT membranes containing eight cyclopentane rings in the molecule are packed much tighter than those without rings. When containing eight cyclopentane rings, the beta-D-galactosyl-D-glucose head-group of GDNT runs almost parallel to the membrane surface. However, when containing no rings, the head-group is oriented perpendicular to the membrane surface. Using molecular dynamics calculations, we have also conducted comparative studies of membrane packing between GDNT and various non-archaebacterial membranes. Compared to gel state dipalmitoylphosphatidylcholine (DPPC) and gel state distearoylphosphatidylcholine (DSPC) bilayers, the GDNT membrane with eight cyclopentane rings has a more negative interaction energy, thus a tighter membrane packing, while the GDNT without rings is less tightly packed than gel state DSPC. Based on the calculated interaction energies, the GDNT membranes (with and without rings) are much more tightly packed than DPhPC (an ester-linked diphytanyl PC) and DPhyPC (an ether-linked diphytanyl PC) bilayers. This suggests that the branched methyl group in the phytanyl chain is not the major contributor of the tight packing of GDNT membranes. The biological implication of this study is that the cyclopentane ring could increase GDNT membrane thermal stability. This explains why the number of cyclopentane rings in archaebacterial lipid increases with increasing growth temperature. Perhaps, through the ring-temperature compensation mechanism the plasma membrane of thermoacidophilic archaebacteria is able to maintain a tight and rigid structure, consequently, a constant proton gradient between the extracellular (pH 2.5) and intracellular compartment (pH 6.5), over a wide range of growth temperatures.
Chemistry and Physics of Lipids | 2010
Parkson Lee-Gau Chong
Bipolar tetraether lipids (BTL) are abundant in archaea and can be chemically synthesized. The structures of BTL are distinctly different from the lipids found in bacteria and eukaryotes. In aqueous solution, BTL can form extraordinarily stable liposomes with different sizes, lamellarities and membrane packing densities. BTL liposomes can serve as membrane models for understanding the structure-function relationship of the plasma membrane in thermoacidophiles and can be used for technological applications. This article reviews the separation, characterization and structures of BTL as well as the physical properties and technological applications of BTL liposomes. One of the structural features of BTL is the presence of cyclopentane rings in the lipid hydrocarbon core. Archaea use the cyclopentane ring as an adaptation strategy to cope with high growth temperature. Special attention of this article is focused on how the number of cyclopentane rings varies with environmental factors and affects membrane properties.
Journal of Membrane Science | 2002
Alessandra Gliozzi; Annalisa Relini; Parkson Lee-Gau Chong
This review is a general survey of the properties of membranes formed by tetraether lipids extracted from microorganisms living in extreme conditions, named Archaea. After describing the unusual structure and physico-chemical properties of the membrane-spanning lipids, which allow Archaea to maintain membrane integrity in harsh environments, we consider their molecular organization in model systems such as monolayers, artificial black membranes and liposomes. The latter, due to their remarkable thermal stability, can lead to attractive biotechnological applications. Membrane permeability, local membrane fluidity and packing characteristics are reviewed with the aim of correlating structural features to permeability properties. In particular, studies on the very low passive proton permeation and leakage of entrapped molecules are reported and discussed in terms of membrane structure. Work on synthetic tetraether compounds is also reported.
Journal of Pharmacology and Experimental Therapeutics | 2006
Wei Xu; Su-In Yoon; Peng Huang; Yulin Wang; Chongguang Chen; Parkson Lee-Gau Chong; Lee-Yuan Liu-Chen
Lipid rafts are microdomains of plasma membranes enriched in cholesterol and sphingolipids in the outer layer. We determined whether κ opioid receptors (KOR) in human placenta and FLAG (DYKDDDDK)-tagged human KOR (FLAG-hKOR) expressed in Chinese hamster ovary (CHO) cells are localized in lipid rafts and whether changes in cholesterol contents affect hKOR properties and signaling. Lipid rafts were prepared from placenta membranes and CHO cells expressing FLAG-hKOR using the Na2CO3 method and fractionation through a sucrose density gradient. The majority of the KOR in the placenta and FLAG-hKOR in CHO cells, determined by [3H]diprenorphine binding and/or immunoblotting with an anti-FLAG antibody, was present in low-density fractions, coinciding with high levels of caveolin-1 and cholesterol, markers of lipid rafts, which indicated that the KOR is localized in lipid rafts. Pretreatment with 2% methyl β-cyclodextrin (MCD) reduced cholesterol content by ∼48% and changed the cells from spindle-shaped to spherical. MCD treatment disrupted lipid rafts, shifted caveolin-1 and FLAG-hKOR to higher density fractions, increased the affinity of (–)-(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50,488H) for the hKOR, and greatly increased U50,488H-induced [35S]guanosine 5′-O-(3-thio)triphosphate binding and p42/44 mitogen-activated protein kinase phosphorylation. Cholesterol replenishment reversed all the MCD effects. Caveolin-1 immunoprecipitated with Gαi proteins and MCD treatment reduced caveolin-1 associated with Gαi proteins, which may contribute to the enhanced agonist-induced G protein activation. Caveolin-1 also immunoprecipitated with FLAG-hKOR, but MCD treatment had no effect on the association. Thus, the KOR is located in lipid rafts and its localization in the microdomains greatly affects coupling to G proteins.
Biophysical Journal | 1997
Fang Liu; I.P. Sugar; Parkson Lee-Gau Chong
We have examined the fractional sterol concentration dependence of dehydroergosterol (DHE) fluorescence in DHE/cholesterol/dimyristoyl-L-alpha-phosphatidylcholine (DMPC), DHE/ergosterol/DMPC and DHE/cholesterol/dipalmitoyl-L-alpha-phosphatidylcholine (DPPC) liquid-crystalline bilayers. Fluorescence intensity and lifetime exhibit local minima (dips) whenever the total sterol mole fraction, irrespective of the DHE content, is near the critical mole fractions predicted for sterols being regularly distributed in hexagonal superlattices. This result provides evidence that all three of these naturally occurring sterols (e.g., cholesterol, ergosterol, and DHE) can be regularly distributed in the membrane and that the bulky tetracyclic ring of the sterols is the cause of regular distribution. Moreover, at the critical sterol mole fractions, the steady-state anisotropy of DHE fluorescence and the calculated rotational relaxation times exhibit distinct peaks, suggesting that membrane free volume reaches a local minimum at critical sterol mole fractions. This, combined with the well-known sterol condensing effect on lipid acyl chains, provides a new understanding of how variations in membrane sterol content change membrane free volume. In addition to the fluorescence dips/peaks corresponding to hexagonal superlattices, we have observed intermediate fluorescence dips/peaks at concentrations predicted by the centered rectangular superlattice model. However, the 22.2 mol% dip for centered rectangular superlattices in DHE/ergosterol/DMPC mixtures becomes diminished after long incubation (4 weeks), whereas on the same time frame the 22.2 mol% dip in DHE/cholesterol/DMPC mixtures remains discernible, suggesting that although all three of these sterols can be regularly distributed, subtle differences in sterol structure cause changes in lateral sterol organization in the membrane.
Biophysical Journal | 2000
Luis A. Bagatolli; Enrico Gratton; Tapan K. Khan; Parkson Lee-Gau Chong
The effects of temperature and pH on Laurdan (6-lauroyl-2-(dimethylamino)naphthalene) fluorescence intensity images of giant unilamellar vesicles (GUVs) ( approximately 20-150 microm in diameter) composed of the polar lipid fraction E (PLFE) from the thermoacidophilic archaebacteria Sulfolobus acidocaldarius have been studied using two-photon excitation. PLFE GUVs made by the electroformation method were stable and well suited for microscopy studies. The generalized polarization (GP) of Laurdan fluorescence in the center cross section of the vesicles has been determined as a function of temperature at pH 7.23 and pH 2.68. At all of the temperatures and pHs examined, the GP values are low (below or close to 0), and the GP histograms show a broad distribution width (> 0.3). When excited with light polarized in the y direction, Laurdan fluorescence in the center cross section of the PLFE GUVs exhibits a photoselection effect showing much higher intensities in the x direction of the vesicles, a result opposite that previously obtained on monopolar diester phospholipids. This result indicates that the chromophore of Laurdan in PLFE GUVs is aligned parallel to the membrane surface. The x direction photoselection effect and the low GP values lead us to further propose that the Laurdan chromophore resides in the polar headgroup region of the PLFE liposomes, while the lauroyl tail inserts into the hydrocarbon core of the membrane. This unusual L-shaped disposition is presumably caused by the unique lipid structures and by the rigid and tight membrane packing in PLFE liposomes. The GP exhibited, at both pH values, a small but abrupt decrease near 50 degrees C, suggesting a conformational change in the polar headgroups of PLFE. This transition temperature fully agrees with the d-spacing data recently measured by small-angle x-ray diffraction and with the pyrene-labeled phosphatidylcholine and perylene fluorescence data previously obtained from PLFE multilamellar vesicles. Interestingly, the two-photon Laurdan fluorescence images showed snowflake-like lipid domains in PLFE GUVs at pH 7.23 and low temperatures (<20 degrees C in the cooling scan and <24 degrees C in the heating scan). These domains, attributable to lipid lateral separation, were stable and laterally immobile at low temperatures (<23 degrees C), again suggesting tight membrane packing in the PLFE GUVs.
Biochemistry | 2004
Mei Mei Wang; Istvan P. Sugar; Parkson Lee-Gau Chong
Here, the interplay between membrane cholesterol lateral organization and the activity of membrane surface-acting enzymes was addressed using soil bacteria cholesterol oxidase (COD) as a model. Specifically, the effect of the membrane cholesterol mole fraction on the initial rate of cholesterol oxidation catalyzed by COD was investigated at 37 degrees C using cholesterol/1-palmitoyl-2-oleoyl-l-alpha-phosphatidylcholine (POPC) large unilamellar vesicles (LUVs, approximately 800 nm in diameter). In the three concentration ranges examined (18.8-21.2, 23.6-26.3, and 32.2-34.5 mol % cholesterol), the initial activity of COD changed with cholesterol mole fraction in a biphasic manner, exhibiting a local maximum at 19.7, 25.0, and 33.4 mol %. Within the experimental errors, these mole fractions agree with the critical cholesterol mole fractions (C(r)) (20.0, 25.0, and 33.3) theoretically predicted for maximal superlattice formation. The activity variation with cholesterol content was correlated well with the area of regular distribution (A(reg)) in the plane of the membrane as determined by nystatin fluorescence. A similar biphasic change in COD activity was detected at the critical sterol mole fraction 20 mol % in dehydroergosterol (DHE)/POPC LUVs (approximately 168 nm in diameter). These results indicate that the activity of COD is regulated by the extent of sterol superlattice for both sterols (DHE and cholesterol) and for a wide range of vesicle sizes (approximately 168-800 nm). The present work on COD and the previous study on phospholipase A(2) (sPLA(2)) [Liu and Chong (1999) Biochemistry 38, 3867-3873] suggest that the activities of some surface-acting enzymes may be regulated by the extent of sterol superlattice in the membrane in a substrate-dependent manner. When the substrate is a sterol, as it is with COD, the enzyme activity reaches a local maximum at C(r). When phospholipid is the substrate, the minimum activity is at C(r), as is the case with sPLA(2). Both phenomena are in accordance with the sterol superlattice model and manifest the functional importance of membrane cholesterol content.
Biophysical Journal | 1994
Parkson Lee-Gau Chong; D. Tang; I.P. Sugar
In a previous study, we observed a series of dips in the plot of E/M (the ratio of excimer to monomer fluorescence intensity) versus the mole fraction of 1-palmitoyl-2-(10-pyrenyl)decanoyl-sn-glycerol-3-phosphatidylcholine (Pyr-PC) in Pyr-PC/DMPC binary mixtures at 30 degrees C. In the present study, we have characterized the physical nature of E/M dips in Pyr-PC/DMPC binary mixtures by varying pressure, temperature, and vesicle diameter. The E/M dips at 66.7 and at 71.4 mol% PyrPC in DMPC multilamellar vesicles remain discernible at 30-43 degrees C. At higher temperatures (e.g., 53 degrees C), the depth of the dip abruptly becomes smaller. This result agrees with the idea that E/M dips appear as a result of regular distribution of pyrene-labeled acyl chains into hexagonal super-lattices at critical mole fractions. Regular distribution is a self-ordering phenomenon. Usually, in self-ordered systems, the number of structural defects increases with increasing temperature, and thermal fluctuations eventually result in an order-to-disorder transition. The effect of vesicle diameter on the E/M dip at 66.7 mol% Pyr-PC in DMPC has been studied at 37.5 degrees C by using unilamellar vesicles of varying sizes. The E/M dip is observable in large unilamellar vesicles; however, the depth of the E/M dip decreases when the vesicle diameter is reduced. When the vesicle diameter is reduced to about 64 nm, the dip becomes shallow and split. This result suggests that the curvature-induced increase in the separation of lipids in the outer monolayer decreases the tendency of regular distribution for pyrene-labeled acyl chains. Regular distribution is believed to arise from the long-range repulsive interaction between Pyr-PC molecules due to the elastic deformation of the lipid matrix around the bulky pyrene moiety. When the radius of curvature becomes small, outer monolayer lipids are more separated. Therefore, pyrene-containing acyl chains fit better into the membrane matrix, which alleviates the deformation of the lattice and diminishes the long-range repulsive interactions between pyrene-containing acyl chains. Furthermore, we have shown a striking difference in the pressure dependence of E/M at critical Pyr-PC mole fractions and at noncritical mole fractions. In the pressure range between 0.001 and 0.7 kbar at 30 degrees C, E/M decreases steadily with increasing pressure at noncritical mole fractions; in contrast, E/M changes little with pressure at critical mole fractions (e.g., 33.3 and 50.0 mol% Pyr-PC). The pressure data suggest that membrane free volume in the liquid crystalline state of the bilayer is less abundant at critical Pyr-PC mole fractions than at noncritical mole fractions.
Molecular Biology of the Cell | 2013
Megan J. Dobro; Zhiheng Yu; John McCullough; H. Jane Ding; Parkson Lee-Gau Chong; Stephen D. Bell; Grant J. Jensen
ESCRT filaments wrap helically around liposomes and assemble into various helical structures in vitro. Dividing Sulfolobus cells further exhibit a thin, dynamic belt coating division furrows. Together these data suggest that spiraling filaments are involved in membrane scission.