Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack H. Crawford is active.

Publication


Featured researches published by Jack H. Crawford.


Nature Medicine | 2003

Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation.

Kenyatta Cosby; Kristine Partovi; Jack H. Crawford; Rakesh P. Patel; Christopher D. Reiter; Sabrina Martyr; Benjamin K. Yang; Myron A. Waclawiw; Gloria Zalos; Xiuli Xu; Kris T. Huang; Howard Shields; Daniel B. Kim-Shapiro; Alan N. Schechter; Richard O. Cannon; Mark T. Gladwin

Nitrite anions comprise the largest vascular storage pool of nitric oxide (NO), provided that physiological mechanisms exist to reduce nitrite to NO. We evaluated the vasodilator properties and mechanisms for bioactivation of nitrite in the human forearm. Nitrite infusions of 36 and 0.36 μmol/min into the forearm brachial artery resulted in supra- and near-physiologic intravascular nitrite concentrations, respectively, and increased forearm blood flow before and during exercise, with or without NO synthase inhibition. Nitrite infusions were associated with rapid formation of erythrocyte iron-nitrosylated hemoglobin and, to a lesser extent, S-nitroso-hemoglobin. NO-modified hemoglobin formation was inversely proportional to oxyhemoglobin saturation. Vasodilation of rat aortic rings and formation of both NO gas and NO-modified hemoglobin resulted from the nitrite reductase activity of deoxyhemoglobin and deoxygenated erythrocytes. This finding links tissue hypoxia, hemoglobin allostery and nitrite bioactivation. These results suggest that nitrite represents a major bioavailable pool of NO, and describe a new physiological function for hemoglobin as a nitrite reductase, potentially contributing to hypoxic vasodilation.


Journal of Clinical Investigation | 2007

Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation

John D. Lang; Xinjun Teng; Phillip Chumley; Jack H. Crawford; T. Scott Isbell; Balu K. Chacko; Yuliang Liu; Nirag Jhala; D. Ralph Crowe; Alvin B. Smith; Richard C. Cross; Luc Frenette; Eric E. Kelley; Diana W. Wilhite; Cheryl R. Hall; Grier P. Page; Michael B. Fallon; J. Steven Bynon; Devin E. Eckhoff; Rakesh P. Patel

Ischemia/reperfusion (IR) injury in transplanted livers contributes to organ dysfunction and failure and is characterized in part by loss of NO bioavailability. Inhalation of NO is nontoxic and at high concentrations (80 ppm) inhibits IR injury in extrapulmonary tissues. In this prospective, blinded, placebo-controlled study, we evaluated the hypothesis that administration of inhaled NO (iNO; 80 ppm) to patients undergoing orthotopic liver transplantation inhibits hepatic IR injury, resulting in improved liver function. Patients were randomized to receive either placebo or iNO (n = 10 per group) during the operative period only. When results were adjusted for cold ischemia time and sex, iNO significantly decreased hospital length of stay, and evaluation of serum transaminases (alanine transaminase, aspartate aminotransferase) and coagulation times (prothrombin time, partial thromboplastin time) indicated that iNO improved the rate at which liver function was restored after transplantation. iNO did not significantly affect changes in inflammatory markers in liver tissue 1 hour after reperfusion but significantly lowered hepatocyte apoptosis. Evaluation of circulating NO metabolites indicated that the most likely candidate transducer of extrapulmonary effects of iNO was nitrite. In summary, this study supports the clinical use of iNO as an extrapulmonary therapeutic to improve organ function following transplantation.


Free Radical Biology and Medicine | 2001

Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging

Rakesh P. Patel; Brenda J. Boersma; Jack H. Crawford; Neil Hogg; Marion Kirk; B. Kalyanaraman; Dale A. Parks; Stephen Barnes; Victor M. Darley-Usmar

Oxidation of lipids has been implicated in the pathophysiology of atherosclerosis. It has been suggested that scavenging of lipid peroxyl radicals contribute to the antiatherosclerotic effects of naturally occurring compounds such as the isoflavones. This group of polyphenolics includes genistein and is present in relatively high concentrations in food products containing soy. Soy isoflavones are capable of inhibiting lipoprotein oxidation in vitro and suppressing formation of plasma lipid oxidation products in vivo. However, key aspects of the antioxidant mechanisms remain unknown. In this study the antioxidant effects of genistein and other soy isoflavones on lipid peroxidation initiated by mechanistically diverse oxidants was investigated. Although isoflavones inhibited lipid peroxidation stimulated by both metal-dependent and independent processes, the concentration required for these effects were relatively high compared to those found in vivo. Interestingly, however, isoflavones were not consumed and remained in the native state over the time during which inhibition of lipid peroxidation was observed. This was also the case under conditions where synergistic inhibition of LDL oxidation was observed with ascorbate. Furthermore, in an oxidation system driven solely by peroxyl radicals, isoflavones were found to be relatively poor peroxyl radical scavengers. Consistent with the apparent lack of reactivity with lipid-derived oxidants, isoflavones were also relatively resistant to oxidation mediated by the potent oxidant peroxynitrite. The potential antioxidant mechanisms of isoflavones are discussed in the context of possible reactivities of isoflavone-derived phenoxyl radicals.


Journal of Biological Chemistry | 2005

Fatty Acid Transduction of Nitric Oxide Signaling NITROLINOLEIC ACID IS A HYDROPHOBICALLY STABILIZED NITRIC OXIDE DONOR

Francisco J. Schopfer; Paul R. S. Baker; Gregory I. Giles; Phil Chumley; Carlos Batthyany; Jack H. Crawford; Rakesh P. Patel; Neil Hogg; Bruce P. Branchaud; Jack R. Lancaster; Bruce A. Freeman

The aqueous decay and concomitant release of nitric oxide (·NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of ·NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and ·NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of ·NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of ·NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.


Cardiovascular Research | 2000

Mechanisms of the pro- and anti-oxidant actions of nitric oxide in atherosclerosis

Rakesh P. Patel; Anna-Liisa Levonen; Jack H. Crawford; Victor M. Darley-Usmar

The association of nitric oxide (NO) with cardiovascular disease has long been recognized and the extensive research on this topic has revealed both pro- and anti-atherosclerotic effects. While these contradictory findings were initially perplexing recent studies offer molecular mechanisms for the integration of these data in the context of our current understanding of the biochemistry of NO. The essential findings are that the biochemical properties of NO allow its exploitation as both a cell signaling molecule, through its interaction with redox centers in heme proteins, and an extremely rapid reaction with other biologically relevant free radicals. The direct reaction of NO with free radicals can have either pro- or antioxidant effects. In the cell, antioxidant properties of NO can be greatly amplified by the activation of signal transduction pathways that lead to the increased synthesis of endogenous antioxidants or down regulate responses to pro-inflammatory stimuli. These findings will be discussed in the context of atherosclerosis.


Biochemical Journal | 2004

Mechanisms of the interaction of nitroxyl with mitochondria

Sruti Shiva; Jack H. Crawford; Erin K. Ceaser; Tess Hillson; Paul S. Brookes; Rakesh P. Patel; Victor M. Darley-Usmar

It is now thought that NO* (nitric oxide) and its redox congeners may play a role in the physiological regulation of mitochondrial function. The inhibition of cytochrome c oxidase by NO* is characterized as being reversible and oxygen dependent. In contrast, peroxynitrite, the product of the reaction of NO* with superoxide, irreversibly inhibits several of the respiratory complexes. However, little is known about the effects of HNO (nitroxyl) on mitochondrial function. This is especially important, since HNO has been shown to be more cytotoxic than NO*, may potentially be generated in vivo, and elicits biological responses with some of the characteristics of NO and peroxynitrite. In the present study, we present evidence that isolated mitochondria, in the absence or presence of substrate, convert HNO into NO* by a process that is dependent on mitochondrial concentration as well as the concentration of the HNO donor Angelis salt. In addition, HNO is able to inhibit mitochondrial respiration through the inhibition of complexes I and II, most probably via modification of specific cysteine residues in the proteins. Using a proteomics approach, extensive modification of mitochondrial protein thiols was demonstrated. From these data it is evident that HNO interacts with mitochondria through mechanisms distinct from those of either NO* or peroxynitrite, including the generation of NO*, the modification of thiols and the inhibition of complexes I and II.


Journal of Medicinal Chemistry | 2011

Acyloxy Nitroso Compounds as Nitroxyl (HNO) Donors: Kinetics, Reactions with Thiols and Vasodilation Properties

Mai E. Shoman; Jenna F. DuMond; T. S. Isbell; Jack H. Crawford; Angela Brandon; Jaideep Honovar; Dario A. Vitturi; C. R. White; Rakesh P. Patel; S. Bruce King

Acyloxy nitroso compounds hydrolyze to nitroxyl (HNO), a nitrogen monoxide with distinct chemistry and biology. Ultraviolet-visible spectroscopy and mass spectrometry show hydrolysis rate depends on pH and ester group structure with the observed rate being trifluoroacetate (3) > acetate (1) > pivalate (2). Under all conditions, 3 rapidly hydrolyzes to HNO. A combination of spectroscopic, kinetic, and product studies show that addition of thiols increases the decomposition rate of 1 and 2, leading to hydrolysis and HNO. Under conditions that favor thiolates, the thiolate directly reacts with the nitroso group, yielding oximes without HNO formation. Biologically, 3 behaves like Angelis salt, demonstrating thiol-sensitive nitric oxide-mediated soluble guanylate cyclase-dependent vasorelaxation, suggesting HNO-mediated vasorelaxation. The slow HNO-donor 1 demonstrates weak thiol-insensitive vasorelaxation, indicating HNO release kinetics determine HNO bioavailability and activity. These results show that acyloxy nitroso compounds represent new HNO donors capable of vasorelaxation depending on HNO release kinetics.


Methods in Enzymology | 2008

Novel Method for Measuring S-Nitrosothiols Using Hydrogen Sulfide

Xinjun Teng; T. Scott Isbell; Jack H. Crawford; Charles A. Bosworth; Gregory I. Giles; Jeffrey R. Koenitzer; Jack R. Lancaster; Jeannette E. Doeller; David W. Kraus; Rakesh P. Patel

Recent advances in techniques that allow sensitive and specific measurement of S-nitrosothiols (RSNOs) have provided evidence for a role for these compounds in various aspects of nitric oxide (NO) biology. The most widely used approach is to couple reaction chemistry that selectively reduces RSNOs by one electron to produce NO, with the sensitive detection of the latter under anaerobic conditions using ozone based chemiluminescence in NO analyzers. Herein, we report a novel reaction that is readily adaptable for commercial NO analyzers that utilizes hydrogen sulfide (H2S), a gas that can reduce RSNO to NO and, analogous to NO, is produced by endogenous metabolism and has effects on diverse biological functions. We discuss factors that affect H2S based methods for RSNO measurement and discuss the potential of H2S as an experimental tool to measure RSNO.


Redox biology | 2013

Is methemoglobin an inert bystander, biomarker or a mediator of oxidative stress—The example of anemia?

Gregory M. T. Hare; Albert K. Y. Tsui; Jack H. Crawford; Rakesh P. Patel

Acute anemia increases the risk for perioperative morbidity and mortality in critically ill patients who experience blood loss and fluid resuscitation (hemodilution). Animal models of acute anemia suggest that neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) is adaptive and protects against anemia-induced mortality. During acute anemia, we have observed a small but consistent increase in methemoglobin (MetHb) levels that is inversely proportional to the acute reduction in Hb observed during hemodilution in animals and humans. We hypothesize that this increase in MetHb may be a biomarker of anemia-induced tissue hypoxia. The increase in MetHb may occur by at least two mechanisms: (1) direct hemoglobin oxidation by increased nNOS-derived NO within the perivascular tissue and (2) by increased deoxyhemoglobin (DeoxyHb) nitrite reductase activity within the vascular compartment. Both mechanisms reflect a potential increase in NO signaling from the tissue and vascular compartments during anemia. These responses are thought to be adaptive; as deletion of nNOS results in increased mortality in a model of acute anemia. Finally, it is possible that prolonged activation of these mechanisms may lead to maladaptive changes in redox signaling. We hypothesize, increased MetHb in the vascular compartment during acute anemia may reflect activation of adaptive mechanisms which augment NO signaling. Understanding the link between anemia, MetHb and its treatments (transfusion of stored blood) may help us to develop novel treatment strategies to reduce the risk of anemia-induced morbidity and mortality.


Methods in Enzymology | 2005

Assessing NO-dependent vasodilatation using vessel bioassays at defined oxygen tensions.

T. Scott Isbell; Jeffrey R. Koenitzer; Jack H. Crawford; C.R. White; David W. Kraus; Rakesh P. Patel

Results from vessel bioassays have provided the foundation for much of our understanding of the mechanisms that control vascular homeostasis and blood flow. The seminal observations that led to the discovery that nitric oxide (NO) is a critical mediator of vascular relaxation were made with the use of such methodology, and many studies have used NO-dependent vessel relaxation as an experimental readout for understanding mechanisms that regulate vascular NO function. Studies have coupled controlling oxygen tensions within vessel bioassay chambers to begin to understand how oxygen-specifically hypoxia-regulate NO function, and this context has identified red cells-specifically hemoglobin within-as critical modulators. Alone, vessel bioassays or measuring oxygen partial pressures (pO2) is relatively straightforward, but the combination necessitates consideration of several factors. We use the example of deoxygenated red cells/hemoglobin-dependent potentiation of nitrite-dependent dilation to illustrate the salient factors that are critical to consider in designing and interpreting experiments aimed at understanding the interplay between oxygen and NO function in the vasculature.

Collaboration


Dive into the Jack H. Crawford's collaboration.

Top Co-Authors

Avatar

Rakesh P. Patel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Balu K. Chacko

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Victor M. Darley-Usmar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

John D. Lang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

T. Scott Isbell

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Sruti Shiva

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

David W. Kraus

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Hogg

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Alan N. Schechter

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge