Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack H. Winters is active.

Publication


Featured researches published by Jack H. Winters.


IEEE Transactions on Communications | 1994

The impact of antenna diversity on the capacity of wireless communication systems

Jack H. Winters; Jack Salz; Richard D. Gitlin

For a broad class of interference-dominated wireless systems including mobile, personal communications, and wireless PBX/LAN networks, the authors show that a significant increase in system capacity can be achieved by the use of spatial diversity (multiple antennas), and optimum combining. This is explained by the following observation: for independent flat-Rayleigh fading wireless systems with N mutually interfering users, they demonstrate that with K+N antennas, N-1 interferers can be nulled out and K+1 path diversity improvement can be achieved by each of the N users. Monte Carlo evaluations show that these results also hold with frequency-selective fading when optimum equalization is used at the receiver. Thus an N-fold increase in user capacity can be achieved, allowing for modular growth and improved performance by increasing the number of antennas. The interferers can also be users in other cells, users in other radio systems, or even other types of radiating devices, and thus interference cancellation also allows radio systems to operate in high interference environments. As an example of the potential system gain, the authors show that with 2 or 3 antennas the capacity of the mobile radio system IS-54 can be doubled, and with 5 antennas a 7-fold capacity increase (frequency reuse in every cell) can be achieved. >


IEEE Journal on Selected Areas in Communications | 1987

On the Capacity of Radio Communication Systems with Diversity in a Rayleigh Fading Environment

Jack H. Winters

In this paper, we study the fundamental limits on the data rate of multiple antenna systems in a Rayleigh fading environment. With M transmit and M receive antennas, up to M independent channels can be established in the same bandwidth. We study the distribution of the maximum data rate at a given error rate in the channels between up to M transmit antennas and M receive antennas and determine the outage probability for systems that use various signal processing techniques. We analyze the performance of the optimum linear and nonlinear receiver processor and the optimum linear transmitter/receiver processor pair, and the capacity of these channels. Results show that with optimum linear processing at the receiver, up to M/2 channels can be established with approximately the same maximum data rate as a single channel. With either nonlinear processing at the receiver or optimum linear transmitter/receiver processing, up to M channels can be established with approximately the same maximum data rate as a single channel. Results show the potential for large capacity in systems with limited bandwidth.


IEEE Personal Communications | 1998

Smart antennas for wireless systems

Jack H. Winters

In this article we discuss current and future antenna technology for wireless systems and the improvement that smart and adaptive antenna arrays can provide. We describe standard cellular antennas, smart antennas using fixed beams, and adaptive antennas for base stations, as well as antenna technologies for handsets. We show the potential improvement that these antennas can provide, including range extension, multipath diversity, interference suppression, capacity increase, and data rate increase. The issues involved in incorporating these antennas into wireless systems using CDMA, GSM, and IS-136 in different environments, such as rural, suburban, and urban areas, as well as indoors, are described. Theoretical, computer simulation, experimental, and field trial results are also discussed that demonstrate the potential of this technology.


vehicular technology conference | 1994

Effect of fading correlation on adaptive arrays in digital mobile radio

Jack Salz; Jack H. Winters

In this paper, we investigate the effect of correlations among the fading signals at the antenna elements of an adaptive array in a digital wireless communication system. With an adaptive array, the signals received by multiple antennas are optimally weighted and combined to suppress interference and combat desired signal fading. Previous results for flat and frequency-selective fading assumed independent fading at each antenna. Here, we present a model of local scattering around a mobile where the received multipath signals arrive at the base station within a given beamwidth, and derive a closed-form expression for the correlation as a function of antenna spacing. Results show that the degradation in performance with correlation in an adaptive array that combats fading and suppresses interference is only slightly larger than that for combating fading alone, i.e., with maximal ratio combining. This degradation is small even with correlation as high as 0.5. >


IEEE Transactions on Wireless Communications | 2005

Capacity of MIMO systems with antenna selection

Andreas F. Molisch; Moe Z. Win; Yang-Seok Choi; Jack H. Winters

We consider the capacity of multiple-input multiple-output systems with reduced complexity. One link-end uses all available antennas, while the other chooses the L out of N antennas that maximize capacity. We derive an upper bound on the capacity that can be expressed as the sum of the logarithms of ordered chi-square-distributed variables. This bound is then evaluated analytically and compared to the results obtained by Monte Carlo simulations. Our results show that the achieved capacity is close to the capacity of a full-complexity system provided that L is at least as large as the number of antennas at the other link-end. For example, for L = 3, N = 8 antennas at the receiver and three antennas at the transmitter, the capacity of the reduced-complexity scheme is 20 bits/s/Hz compared to 23 bits/s/Hz of a full-complexity scheme. We also present a suboptimum antenna subset selection algorithm that has a complexity of N/sup 2/ compared to the optimum algorithm with a complexity of (N/sub L/).


IEEE Transactions on Communications | 2002

MIMO-OFDM for wireless communications: signal detection with enhanced channel estimation

Ye Li; Jack H. Winters; Nelson Sollenberger

Multiple transmit and receive antennas can be used to form multiple-input multiple-output (MIMO) channels to increase the capacity by a factor of the minimum number of transmit and receive antennas. In this paper, orthogonal frequency division multiplexing (OFDM) for MIMO channels (MIMO-OFDM) is considered for wideband transmission to mitigate intersymbol interference and enhance system capacity. The MIMO-OFDM system uses two independent space-time codes for two sets of two transmit antennas. At the receiver, the independent space-time codes are decoded using prewhitening, followed by minimum-Euclidean-distance decoding based on successive interference cancellation. Computer simulation shows that for four-input and four-output systems transmitting data at 4 Mb/s over a 1.25 MHz channel, the required signal-to-noise ratios (SNRs) for 10% and 1% word error rates (WER) are 10.5 dB and 13.8 dB, respectively, when each codeword contains 500 information bits and the channels Doppler frequency is 40 Hz (corresponding normalized frequency: 0.9%). Increasing the number of the receive antennas improves the system performance. When the number or receive antennas is increased from four to eight, the required SNRs for 10% and 1% WER are reduced to 4 dB and 6 dB, respectively. Therefore, MIMO-OFDM is a promising technique for highly spectrally efficient wideband transmission.


International Journal of Wireless Information Networks | 1994

Two signaling schemes for improving the error performance of frequency division duplex (FDD) transmission systems using transmitter antenna diversity

N. Seshadri; Jack H. Winters

We propose two signaling schemes that exploit the availability of multiple (N) antennas at the transmitter to provide diversity benefit to the receiver. This is typical of cellular radio systems where a mobile is equipped with only one antenna while the base station is equipped with multiple antennas. We further assume that the mobile-to-base and base-to-mobile channel variations are statistically independent and that the base station has no knowledge of the base-to-mobile channel characteristics. In the first scheme, a channel code of lengthN and minimum Hamming distancedmin≤N is used to encode a group ofK information bits. Channel code symbolci is transmitted with thei th antenna. At the receiver, a maximum likelihood decoder for the channel code provides a diversity ofdmin as long as each transmitted code symbol is subjected to independent fading. This can be achieved by spacing the transmit antennas several wavelengths apart. The second scheme introduces deliberate resolvable multipath distortion by transmitting the data-bearing signal with antenna 1, andN−1 delayed versions of it with antennas 2 throughN. The delays are unique to each antenna and are chosen to be multiples of the symbol interval. At the receiver, a maximum likelihood sequence estimator resolves the multipath in an optimal manner to realize a diversity benefit ofN. Both schemes can suppress co-channel interference. We provide code constructions and simulation results for scheme 1 to demonstrate its merit. We derive the receiver structure and provide a bound on the error probability for scheme 2 which we show to be tight, by means of simulations, for the nontrivial and perhaps the most interesting caseN=2 antennas. The second scheme is backward-compatible with two of the proposed digital cellular system standards, viz., GSM for Europe and IS-54 for North America.


IEEE Transactions on Communications | 1999

Analysis of hybrid selection/maximal-ratio combining in Rayleigh fading

Moe Z. Win; Jack H. Winters

We use a novel virtual branch technique to succinctly derive the mean and variance of the combiner output signal-to-noise ratio for hybrid selection/maximal-ratio combining in a multipath-fading environment.


IEEE Transactions on Communications | 1990

Electrical signal processing techniques in long-haul fiber-optic systems

Jack H. Winters; Richard D. Gitlin

The potential for electrical signal processing to mitigate the effect of intersymbol interference in long-haul fiber-optic systems is discussed. Intersymbol interference can severely degrade performance and consequently limit both the maximum distance and data rate of the system. Several techniques for reducing intersymbol interference in single-mode fiber systems with single-frequency lasers are presented, and those techniques which are appropriate at high data rates in direct coherent detection systems are identified. The performances of linear equalization (tapped delay lines), nonlinear cancellation (variable threshold detection), maximum-likelihood detection, coding, and multilevel signaling are analyzed. The results for a simulated binary 8-Gb/s system show that simple techniques can be used to reduce intersymbol interference substantially, thereby increasing the system margin by several decibels. A six-tap linear equalizer increases the dispersion-limited distance (due to chromatic or polarization dispersion) by 20% (or reduces the optical power penalty by as much as a factor of two) in direct detection systems, even when the distortion is nonlinear. A nonlinear cancellation technique (adjusting the decision threshold in the detector based on previously detected bits) can more than double the dispersion-limited distance and/or data rate. >


vehicular technology conference | 1998

The diversity gain of transmit diversity in wireless systems with Rayleigh fading

Jack H. Winters

In this paper, we study the ability of transmit diversity to provide diversity benefit to a receiver in a Rayleigh fading environment. With transmit diversity, multiple antennas transmit delayed versions of a signal to create frequency-selective fading at a single antenna at the receiver, which uses equalization to obtain diversity gain against fading. We use Monte Carlo simulation to study transmit diversity for the case of independent Rayleigh fading from each transmit antenna to the receive antenna and maximum likelihood sequence estimation for equalization at the receiver. Our results show that transmit diversity with M transmit antennas provides a diversity gain within 0.1 dB of that with M receive antennas for any number of antennas. Thus, we can obtain the same diversity benefit at the remotes and base stations using multiple base-station antennas only.

Collaboration


Dive into the Jack H. Winters's collaboration.

Top Co-Authors

Avatar

Moe Z. Win

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ye Li

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard D. Gitlin

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranjan K. Mallik

Indian Institutes of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge