Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jack Lenz is active.

Publication


Featured researches published by Jack Lenz.


Current Biology | 2001

Insertional polymorphisms of full-length endogenous retroviruses in humans

Geoffrey Turner; Madalina Barbulescu; Mei Su; Michael I. Jensen-Seaman; Kenneth K. Kidd; Jack Lenz

Human endogenous retrovirus K (HERV-K) is distinctive among the retroviruses in the human genome in that many HERV-K proviruses were inserted into the human germline after the human and chimpanzee lineages evolutionarily diverged [1, 2]. However, all full-length endogenous retroviruses described to date in humans are sufficiently old that all humans examined were homozygous for their presence [1]. Moreover, none are intact; all have lethal mutations [1, 3, 4]. Here, we describe the first endogenous retroviruses in humans for which both the full-length provirus and the preintegration site alleles are shown to be present in the human population today. One provirus, called HERV-K113, was present in about 30% of tested individuals, while a second, called HERV-K115, was found in about 15%. HERV-K113 has full-length open reading frames (ORFs) for all viral proteins and lacks any nonsynonymous substitutions in amino acid motifs that are well conserved among retroviruses. This is the first such endogenous retrovirus identified in humans. These findings indicate that HERV-K remained capable of reinfecting humans through very recent evolutionary times and that HERV-K113 is an excellent candidate for an endogenous retrovirus that is capable of reinfecting humans today.


Nature Genetics | 2002

Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice

Anders H. Lund; Geoffrey Turner; Alla Trubetskoy; Els Verhoeven; Ellen Wientjens; Danielle Hulsman; Robert G. Russell; Ronald A. DePinho; Jack Lenz; Maarten van Lohuizen

We have used large-scale insertional mutagenesis to identify functional landmarks relevant to cancer in the recently completed mouse genome sequence. We infected Cdkn2a−/− mice with Moloney murine leukemia virus (MoMuLV) to screen for loci that can participate in tumorigenesis in collaboration with loss of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF. Insertional mutagenesis by the latent retrovirus was synergistic with loss of Cdkn2a expression, as indicated by a marked acceleration in the development of both myeloid and lymphoid tumors. We isolated 747 unique sequences flanking retroviral integration sites and mapped them against the mouse genome sequence databases from Celera and Ensembl. In addition to 17 insertions targeting gene loci known to be cancer-related, we identified a total of 37 new common insertion sites (CISs), of which 8 encode components of signaling pathways that are involved in cancer. The effectiveness of large-scale insertional mutagenesis in a sensitized genetic background is demonstrated by the preference for activation of MAP kinase signaling, collaborating with Cdkn2a loss in generating the lymphoid and myeloid tumors. Collectively, our results show that large-scale retroviral insertional mutagenesis in genetically predisposed mice is useful both as a system for identifying genes underlying cancer and as a genetic framework for the assignment of such genes to specific oncogenic pathways.


Current Biology | 1999

MANY HUMAN ENDOGENOUS RETROVIRUS K (HERV-K) PROVIRUSES ARE UNIQUE TO HUMANS

Madalina Barbulescu; Geoffrey Turner; Michael I. Seaman; Amos S. Deinard; Kenneth K. Kidd; Jack Lenz

BACKGROUND Endogenous retroviruses contribute to the evolution of the host genome and can be associated with disease. Human endogenous retrovirus K (HERV-K) is related to the mouse mammary tumor virus and is present in the genomes of humans, apes and cercopithecoids (Old World monkeys). It is unknown how long ago in primate evolution the full-length HERV-K proviruses that are in the human genome today were formed. RESULTS Ten full-length HERV-K proviruses were cloned from the human genome. Using provirus-specific probes, eight of the ten were found to be present in a genetically diverse set of humans but not in other extant hominoids. Intact preintegration sites for each of these eight proviruses were present in the apes. A ninth provirus was detected in the human, chimpanzee, bonobo and gorilla genomes, but not in the orang-utan genome. The tenth was found only in humans, chimpanzees and bonobos. Complete sequencing of six of the human-specific proviruses showed that full-length open reading frames for the retroviral protein precursors Gag-Pro-Pol or Env were each present in multiple proviruses. CONCLUSIONS At least eight full-length HERV-K genomes that are in the human germline today integrated after humans diverged from chimpanzees. All of the viral open reading frames and cis-acting sequences necessary for HERV-K replication must have been intact during the recent time when these proviruses formed. Multiple full-length open reading frames for all HERV-K proteins are present in the human genome today.


Cell | 2012

Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling

Bingruo Wu; Zheng Zhang; Wendy Lui; Xiangjian Chen; Yidong Wang; Alyssa Chamberlain; Ricardo A. Moreno-Rodriguez; Roger R. Markwald; Brian P. O’Rourke; David J. Sharp; Deyou Zheng; Jack Lenz; H. Scott Baldwin; Ching Pin Chang; Bin Zhou

The origins and developmental mechanisms of coronary arteries are incompletely understood. We show here by fate mapping, clonal analysis, and immunohistochemistry that endocardial cells generate the endothelium of coronary arteries. Dye tracking, live imaging, and tissue transplantation also revealed that ventricular endocardial cells are not terminally differentiated; instead, they are angiogenic and form coronary endothelial networks. Myocardial Vegf-a or endocardial Vegfr-2 deletion inhibited coronary angiogenesis and arterial formation by ventricular endocardial cells. In contrast, lineage and knockout studies showed that endocardial cells make a small contribution to the coronary veins, the formation of which is independent of myocardial-to-endocardial Vegf signaling. Thus, contrary to the current view of a common source for the coronary vessels, our findings indicate that the coronary arteries and veins have distinct origins and are formed by different mechanisms. This information may help develop better cell therapies for coronary artery disease.


Nature Medicine | 2010

The TLX1 oncogene drives aneuploidy in T cell transformation

Kim De Keersmaecker; Pedro J. Real; Giusy Della Gatta; Teresa Palomero; Maria Luisa Sulis; Valeria Tosello; Pieter Van Vlierberghe; Kelly A Barnes; Mireia Castillo; Xavier Sole; Michael Hadler; Jack Lenz; Peter D. Aplan; Michelle A. Kelliher; Barbara L. Kee; Pier Paolo Pandolfi; Dietmar J. Kappes; Fotini Gounari; Howard T. Petrie; Joni Van der Meulen; Frank Speleman; Elisabeth Paietta; Janis Racevskis; Peter H. Wiernik; Jacob M. Rowe; Jean Soulier; David Avran; Hélène Cavé; Nicole Dastugue; Susana C. Raimondi

The TLX1 oncogene (encoding the transcription factor T cell leukemia homeobox protein-1) has a major role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). However, the specific mechanisms of T cell transformation downstream of TLX1 remain to be elucidated. Here we show that transgenic expression of human TLX1 in mice induces T-ALL with frequent deletions and mutations in Bcl11b (encoding B cell leukemia/lymphoma-11B) and identify the presence of recurrent mutations and deletions in BCL11B in 16% of human T-ALLs. Most notably, mouse TLX1 tumors were typically aneuploid and showed a marked defect in the activation of the mitotic checkpoint. Mechanistically, TLX1 directly downregulates the expression of CHEK1 (encoding CHK1 checkpoint homolog) and additional mitotic control genes and induces loss of the mitotic checkpoint in nontransformed preleukemic thymocytes. These results identify a previously unrecognized mechanism contributing to chromosomal missegregation and aneuploidy active at the earliest stages of tumor development in the pathogenesis of cancer.


Journal of Virology | 2003

Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas

Rachel Kim; Alla Trubetskoy; Takeshi Suzuki; Nancy A. Jenkins; Neal G. Copeland; Jack Lenz

ABSTRACT The identification of tumor-inducing genes is a driving force for elucidating the molecular mechanisms underlying cancer. Many retroviruses induce tumors by insertion of viral DNA adjacent to cellular oncogenes, resulting in altered expression and/or structure of the encoded proteins. The availability of the mouse genome sequence now allows analysis of retroviral common integration sites in murine tumors to be used as a genetic screen for identification of large numbers of candidate cancer genes. By positioning the sequences of inverse PCR-amplified, virus-host junction fragments within the mouse genome, 19 target genes were identified in T-cell lymphomas induced by the retrovirus SL3-3. The candidate cancer genes included transcription factors (Fos, Gfi1, Lef1, Myb, Myc, Runx3, and Sox3), all three D cyclins, Ras signaling pathway components (Rras2/TC21 and Rasgrp1), and Cmkbr7/CCR7. The most frequent target was Rras2. Insertions as far as 57 kb away from the transcribed portion were associated with substantially increased transcription of Rras2, and no coding sequence mutations, including those typically involved in Ras activation, were detected. These studies demonstrate the power of genome-based analysis of retroviral insertion sites for cancer gene discovery, identify several new genes worth examining for a role in human cancer, and implicate the pathways in which those genes act in lymphomagenesis. They also provide strong genetic evidence that overexpression of unmutated Rras2 contributes to tumorigenesis, thus suggesting that it may also do so if it is inappropriately expressed in human tumors.


PLOS Pathogens | 2007

T Cell Responses to Human Endogenous Retroviruses in HIV-1 Infection

Keith E. Garrison; R. Brad Jones; Duncan A. Meiklejohn; Naveed Anwar; Lishomwa C. Ndhlovu; Joan M. Chapman; Ann L. Erickson; Ashish Agrawal; Gerald Spotts; Frederick Hecht; Seth Rakoff-Nahoum; Jack Lenz; Mario A. Ostrowski; Douglas F. Nixon

Human endogenous retroviruses (HERVs) are remnants of ancient infectious agents that have integrated into the human genome. Under normal circumstances, HERVs are functionally defective or controlled by host factors. In HIV-1-infected individuals, intracellular defense mechanisms are compromised. We hypothesized that HIV-1 infection would remove or alter controls on HERV activity. Expression of HERV could potentially stimulate a T cell response to HERV antigens, and in regions of HIV-1/HERV similarity, these T cells could be cross-reactive. We determined that the levels of HERV production in HIV-1-positive individuals exceed those of HIV-1-negative controls. To investigate the impact of HERV activity on specific immunity, we examined T cell responses to HERV peptides in 29 HIV-1-positive and 13 HIV-1-negative study participants. We report T cell responses to peptides derived from regions of HERV detected by ELISPOT analysis in the HIV-1-positive study participants. We show an inverse correlation between anti-HERV T cell responses and HIV-1 plasma viral load. In HIV-1-positive individuals, we demonstrate that HERV-specific T cells are capable of killing cells presenting their cognate peptide. These data indicate that HIV-1 infection leads to HERV expression and stimulation of a HERV-specific CD8+ T cell response. HERV-specific CD8+ T cells have characteristics consistent with an important role in the response to HIV-1 infection: a phenotype similar to that of T cells responding to an effectively controlled virus (cytomegalovirus), an inverse correlation with HIV-1 plasma viral load, and the ability to lyse cells presenting their target peptide. These characteristics suggest that elicitation of anti-HERV-specific immune responses is a novel approach to immunotherapeutic vaccination. As endogenous retroviral sequences are fixed in the human genome, they provide a stable target, and HERV-specific T cells could recognize a cell infected by any HIV-1 viral variant. HERV-specific immunity is an important new avenue for investigation in HIV-1 pathogenesis and vaccine design.


Current Biology | 2004

Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations

Larry Herbst; Ada Ene; Mei Su; Rob DeSalle; Jack Lenz

The editors of Current Biology welcome correspondence on any article in the journal, but reserve the right to reduce the length of any letter to be published. All Correspondence containing data or scientific argument will be refereed. Queries about articles for consideration in this format should be sent by e-mail to [email protected]


Journal of Wildlife Diseases | 2005

DISTRIBUTION OF CHELONID FIBROPAPILLOMATOSIS-ASSOCIATED HERPESVIRUS VARIANTS IN FLORIDA: MOLECULAR GENETIC EVIDENCE FOR INFECTION OF TURTLES FOLLOWING RECRUITMENT TO NERITIC DEVELOPMENTAL HABITATS

Ada R. Ene; Mei Su; Shefali Lemaire; Corinne Rose; Susan Schaff; Richie Moretti; Jack Lenz; Lawrence H. Herbst

Marine turtle fibropapillomatosis is associated with chelonid fibropapilloma-associated herpesvirus (C-FP-HV) and commonly affects juvenile green turtles (Chelonia mydas) in neritic (nearshore) habitats. Green turtles have a complex life history, characterized by shifts in trophic level as well as habitat during ontogeny. Thus, several hypotheses can be proposed for when turtles become infected with C-FP-HV. They may acquire the virus at an early stage in the life cycle, including prenatal, hatchling, or the posthatchling pelagic stages. Alternatively, they may become infected later in life after they emigrate from the open ocean to neritic habitats. Each hypothesis generates predictions about the spatial distribution of genetic variants of C-FP-HV among nearshore sites within a region. Sequencing of polymerase chain reaction–amplified viral DNA from fibropapillomas of individual turtles was used to genotype the viral variants present in marine turtles from different coastal areas in Florida. We found four distinct virus variants (A, B, C, and D), two of which (A and C) were present in multiple turtle species. Green turtles in Florida were infected with variants A, B, and C. Variant A was found in green turtles from all three areas. Outside the Indian River Lagoon, variant A was most commonly detected and was found in >94% of diseased green turtles and 70% of loggerhead sea turtles (Caretta caretta) in the Florida Bay/Florida Keys. However, in the Indian River Lagoon, variant B was found in >94% of affected green turtles. Variant B was not detected outside of the Indian River system. Chi-square analysis strongly supported (P<0.001) an association between viral variant distribution in green turtles and location. On the basis of the assumption that juvenile green turtles found in Floridas west-central coast, Florida Keys, and Indian River Lagoon areas represented recruits from a mixed pelagic population, we expected that the distribution of viral variants in these turtles would be relatively homogeneous among locations; this would correspond to infection in the earlier phases of their life cycle. The heterogeneous distribution of viral variants in green turtle tumors from different Florida coastal locations strongly supports the hypothesis that, during epizootics, turtles are infected with specific C-FP-HV variants after they arrive as juveniles in neritic habitats. The conclusion that C-FP-HV is acquired after turtles recruit to nearshore habitats should help focus further research efforts on understanding the mechanisms of transmission and raises the possibility that the effect of fibropapillomatosis on turtle populations might be reduced by management strategies designed to break the cycle of transmission in these locations.


Virology | 2009

Genomic characterization of two novel reptilian papillomaviruses, Chelonia mydas papillomavirus 1 and Caretta caretta papillomavirus 1

Lawrence H. Herbst; Jack Lenz; Koenraad Van Doorslaer; Zigui Chen; Brian A. Stacy; James F.X. Wellehan; Charles A. Manire; Robert D. Burk

In this paper we describe the characterization of the genomes of two sea turtle papillomaviruses, Chelonia mydas PV (CmPV-1) and Caretta caretta PV (CcPV-1). The isolation and sequencing of the first non-avian reptilian PVs extend the evolutionary history of PVs to include all amniotes. PVs have now been described in mammals, birds and non-avian reptiles. The chelonian PVs form a distinct clade most closely related to the avian PVs. Unlike the avian PVs, both chelonian PVs have canonical E6 and E7 ORFs, indicating that these genes were present in the common ancestor to mammalian and non-mammalian amniote PVs. Rates of evolution among the non-mammalian PVs were generally slower than those estimated for mammalian PVs, perhaps due to lower metabolic rates among the ectothermic reptiles.

Collaboration


Dive into the Jack Lenz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle A. Kelliher

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Peter D. Aplan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alla Trubetskoy

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chandan Guha

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge