Jack P. Wang
Northeast Forestry University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jack P. Wang.
The Plant Cell | 2014
Jack P. Wang; Punith P. Naik; Hsi-Chuan Chen; Rui Shi; Chien-Yuan Lin; Jie Liu; Christopher M. Shuford; Quanzi Li; Ying-Hsuan Sun; Cranos Williams; David C. Muddiman; Joel J. Ducoste; Ronald R. Sederoff; Vincent L. Chiang
A proteomic-based predictive kinetic metabolic-flux model was developed for monolignol biosynthesis in Populus trichocarpa. Absolute quantities of all monolignol pathway proteins and 189 kinetic parameters were generated to construct the model, which was experimentally validated in transgenic P. trichocarpa and provides a comprehensive description of the monolignol biosynthetic pathway. We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants.
Plant Biotechnology Journal | 2014
Quanzi Li; Jian Song; Shaobing Peng; Jack P. Wang; Guan-Zheng Qu; Ronald R. Sederoff; Vincent L. Chiang
Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.
Tree Physiology | 2011
Quanzi Li; Douyong Min; Jack P. Wang; Ilona Peszlen; Laszlo Horvath; Balazs Horvath; Yufuko Nishimura; Hasan Jameel; Hou-min Chang; Vincent L. Chiang
Members of glycosyltransferase protein families GT8, GT43 and GT47 are implicated in the biosynthesis of xylan in the secondary cell walls of Arabidopsis. The Arabidopsis mutant irx8 has a 60% reduction in xylan. However, over-expression of an ortholog of Arabidopsis IRX8, poplar PoGT8D, in Arabidopsis irx8 mutant could not restore xylan synthesis. The functions of tree GT8D genes remain unclear. We identified two GT8 gene homologs, PtrGT8D1 and PtrGT8D2, in Populus trichocarpa. They are the only two GT8D members and are abundantly and specifically expressed in the differentiating xylem of P. trichocarpa. PtrGT8D1 transcript abundance was >7 times that of PtrGT8D2. To elucidate the genetic function of GT8D in P. trichocarpa, the expression of PtrGT8D1 and PtrGT8D2 was simultaneously knocked down through RNAi. Four transgenic lines had 85-94% reduction in transcripts of PtrGT8D1 and PtrGT8D2, resulting in 29-36% reduction in stem wood xylan content. Xylan reduction had essentially no effect on cellulose quantity but caused an 11-25% increase in lignin. These transgenics exhibit a brittle wood phenotype, accompanied by increased vessel diameter and thinner fiber cell walls in stem xylem. Stem modulus of elasticity and modulus of rupture were reduced by 17-29% and 16-23%, respectively, and were positively correlated with xylan content but negatively correlated with lignin quantity. These results suggest that PtrGT8Ds play key roles in xylan biosynthesis in wood. Xylan may be a more important factor than lignin affecting the stiffness and fracture strength of wood.
Journal of Proteome Research | 2012
Christopher M. Shuford; Quanzi Li; Ying-Hsuan Sun; Hsi-Chuan Chen; Jack P. Wang; Rui Shi; Ronald R. Sederoff; Vincent L. Chiang; David C. Muddiman
The economic value of wood/pulp from many tree species is largely dictated by the quantity and chemical properties of lignin, which is directly related to the composition and linkages of monolignols comprising the polymer. Although much is known regarding the monolignol biosynthetic pathway, our understanding is still deficient due to the lack of quantitative information at the proteomic level. We developed an assay based on protein cleavage isotope dilution mass spectrometry (PC-IDMS) for the determination of all potential, primary enzymes involved in the biosynthesis of monolignols and the peroxidases responsible for their polymerization to form lignin in the model tree species, Populus trichocarpa. Described is the identification of quantitative surrogate peptides through shotgun analysis of native and recombinant proteins, optimization of trypsin proteolysis using fractional factorial design of experiments, and development of a liquid chromatography-selected reaction monitoring method for specific detection of all targeted peptides. Of the 25 targeted enzymes, three were undetected in the normal xylem tissues, and all but two of the detectable species showed good day-to-day precision (CV < 10%). This represents the most comprehensive assay for quantification of proteins regulating monolignol biosynthesis and will lead to a better understanding of lignin formation at a systems level.
The Plant Cell | 2014
Hsi-Chuan Chen; Jina Song; Jack P. Wang; Ying-Chung Lin; Joel J. Ducoste; Christopher M. Shuford; Jie Liu; Quanzi Li; Rui Shi; Angelito I. Nepomuceno; Fikret Isik; David C. Muddiman; Cranos Williams; Ronald R. Sederoff; Vincent L. Chiang
This work shows that 4CL, an enzyme in monolignol biosynthesis, is found as a heterotetrameric complex of two isoforms in Populus trichocarpa. The activity of the heterotetramer can be described by a mathematical model that explains the effects of each isoform with mixtures of substrates and three types of inhibition, providing insights into the regulation of metabolic flux for this pathway. As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein–protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.
Journal of Proteome Research | 2013
Philip L. Loziuk; Jack P. Wang; Quanzi Li; Ronald R. Sederoff; Vincent L. Chiang; David C. Muddiman
Workflows in bottom-up proteomics have traditionally implemented the use of proteolysis during sample preparation; enzymatic digestion is most commonly performed using trypsin. This results in the hydrolysis of peptide bonds forming tryptic peptides, which can then be subjected to LC-MS/MS analysis. While the structure, specificity, and kinetics of trypsin are well characterized, a lack of consensus and understanding has remained regarding fundamental parameters critical to obtaining optimal data from a proteomics experiment. These include the type of trypsin used, pH during digestion, incubation temperature as well as enzyme-to-substrate ratio. Through the use of design of experiments (DOE), we optimized these parameters, resulting in deeper proteome coverage and a greater dynamic range of measurement. The knowledge gained from optimization of a discovery-based proteomics experiment was applied to targeted LC-MS/MS experiments using protein cleavage-isotope dilution mass spectrometry for absolute quantification. We demonstrated the importance of these digest parameters with respect to our limit of detection as well as our ability to acquire more accurate quantitative measurements. Additionally, we were able to quantitatively account for peptide decay observed in previous studies, caused by nonspecific activity of trypsin. The tryptic digest optimization described here has eliminated this previously observed peptide decay as well as provided a greater understanding and standardization for a common but critical sample treatment used across the field of proteomics.
Plant Physiology | 2013
Hsi-Chuan Chen; Jina Song; Cranos Williams; Christopher M. Shuford; Jie Liu; Jack P. Wang; Quanzi Li; Rui Shi; Emine Gokce; Joel J. Ducoste; David C. Muddiman; Ronald R. Sederoff; Vincent L. Chiang
Two 4-coumaric acid:CoA ligases regulate CoA flux with novel specificity. 4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stem-differentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Jack P. Wang; Ling Chuang; Philip L. Loziuk; Hao Chen; Ying-Chung Lin; Rui Shi; Guan-Zheng Qu; David C. Muddiman; Ronald R. Sederoff; Vincent L. Chiang
Significance To meet environmental and developmental needs, the monolignol biosynthetic pathway for lignification in plant cell walls is regulated by complex mechanisms involving transcriptional, posttranscriptional, and metabolic controls. However, posttranslational modification by protein phosphorylation had not been demonstrated in the regulation of monolignol biosynthesis. Here, we show that reversible monophosphorylation at Ser123 or Ser125 acts as an on/off switch for the activity of 5-hydroxyconiferaldehyde O-methyltransferase 2 (PtrAldOMT2). Phosphorylation induces a loss of function of PtrAldOMT2, which directly affects metabolic flux for syringyl monolignol biosynthesis. The Ser123/Ser125 phosphorylation sites are conserved across 98% of AldOMTs from 46 diverse plant species. Protein phosphorylation provides a rapid and energetically efficient mode of regulating PtrAldOMT2 activity for syringyl monolignol biosynthesis and represents an additional level of control for this important pathway. Although phosphorylation has long been known to be an important regulatory modification of proteins, no unequivocal evidence has been presented to show functional control by phosphorylation for the plant monolignol biosynthetic pathway. Here, we present the discovery of phosphorylation-mediated on/off regulation of enzyme activity for 5-hydroxyconiferaldehyde O-methyltransferase 2 (PtrAldOMT2), an enzyme central to monolignol biosynthesis for lignification in stem-differentiating xylem (SDX) of Populus trichocarpa. Phosphorylation turned off the PtrAldOMT2 activity, as demonstrated in vitro by using purified phosphorylated and unphosphorylated recombinant PtrAldOMT2. Protein extracts of P. trichocarpa SDX, which contains endogenous kinases, also phosphorylated recombinant PtrAldOMT2 and turned off the recombinant protein activity. Similarly, ATP/Mn2+-activated phosphorylation of SDX protein extracts reduced the endogenous SDX PtrAldOMT2 activity by ∼60%, and dephosphorylation fully restored the activity. Global shotgun proteomic analysis of phosphopeptide-enriched P. trichocarpa SDX protein fractions identified PtrAldOMT2 monophosphorylation at Ser123 or Ser125 in vivo. Phosphorylation-site mutagenesis verified the PtrAldOMT2 phosphorylation at Ser123 or Ser125 and confirmed the functional importance of these phosphorylation sites for O-methyltransferase activity. The PtrAldOMT2 Ser123 phosphorylation site is conserved across 93% of AldOMTs from 46 diverse plant species, and 98% of the AldOMTs have either Ser123 or Ser125. PtrAldOMT2 is a homodimeric cytosolic enzyme expressed more abundantly in syringyl lignin-rich fiber cells than in guaiacyl lignin-rich vessel cells. The reversible phosphorylation of PtrAldOMT2 is likely to have an important role in regulating syringyl monolignol biosynthesis of P. trichocarpa.
Nature Protocols | 2014
Ying-Chung Lin; Wei Li; Hao Chen; Quanzi Li; Ying-Hsuan Sun; Rui Shi; Chien-Yuan Lin; Jack P. Wang; Hsi-Chuan Chen; Ling Chuang; Guan-Zheng Qu; Ronald R. Sederoff; Vincent L. Chiang
Isolated protoplasts serve as a transient expression system that is highly representative of stable transgenics in terms of transcriptome responses. They can also be used as a cellular system to study gene transactivation and nucleocytoplasmic protein trafficking. They are particularly useful for systems studies in which stable transgenics and mutants are unavailable. We present a protocol for the isolation and transfection of protoplasts from wood-forming tissue, the stem-differentiating xylem (SDX), in the model woody plant Populus trichocarpa. The method involves tissue preparation, digestion of SDX cell walls, protoplast isolation and DNA transfection. Our approach is markedly faster and provides better yields than previous protocols; small (milligrams)- to large (20 g)-scale SDX preparations can be achieved in ∼60 s, with isolation of protoplasts and their subsequent transfection taking ∼50 min. Up to ten different samples can be processed simultaneously in this time scale. Our protocol gives a high yield (∼2.5 × 107 protoplasts per g of SDX) of protoplasts sharing 96% transcriptome identity with intact SDX.
Planta | 2012
Jack P. Wang; Christopher M. Shuford; Quanzi Li; Jina Song; Ying-Chung Lin; Ying-Hsuan Sun; Hsi-Chuan Chen; Cranos Williams; David C. Muddiman; Ronald R. Sederoff; Vincent L. Chiang
Flowering plants have syringyl and guaiacyl subunits in lignin in contrast to the guaiacyl lignin in gymnosperms. The biosynthesis of syringyl subunits is initiated by coniferaldehyde 5-hydroxylase (CAld5H). In Populus trichocarpa there are two closely related CAld5H enzymes (PtrCAld5H1 and PtrCAld5H2) associated with lignin biosynthesis during wood formation. We used yeast recombinant PtrCAld5H1 and PtrCAld5H2 proteins to carry out Michaelis–Menten and inhibition kinetics with LC–MS/MS based absolute protein quantification. CAld5H, a monooxygenase, requires a cytochrome P450 reductase (CPR) as an electron donor. We cloned and expressed three P. trichocarpa CPRs in yeast and show that all are active with both CAld5Hs. The kinetic analysis shows both CAld5Hs have essentially the same biochemical functions. When both CAld5Hs are coexpressed in the same yeast membranes, the resulting enzyme activities are additive, suggesting functional redundancy and independence of these two enzymes. Simulated reaction flux based on Michaelis–Menten kinetics and inhibition kinetics confirmed the redundancy and independence. Subcellular localization of both CAld5Hs as sGFP fusion proteins expressed in P. trichocarpa differentiating xylem protoplasts indicate that they are endoplasmic reticulum resident proteins. These results imply that during wood formation, 5-hydroxylation in monolignol biosynthesis of P. trichocarpa requires the combined metabolic flux of these two CAld5Hs to maintain adequate biosynthesis of syringyl lignin. The combination of genetic analysis, absolute protein quantitation-based enzyme kinetics, homologous CPR specificity, SNP characterization, and ER localization provides a more rigorous basis for a comprehensive systems understanding of 5-hydroxylation in lignin biosynthesis.