Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob Bradley Schwarz is active.

Publication


Featured researches published by Jacob Bradley Schwarz.


Journal of Biological Chemistry | 2010

High-throughput Screening in Embryonic Stem Cell-derived Neurons Identifies Potentiators of α-Amino-3-hydroxyl-5-methyl-4-isoxazolepropionate-type Glutamate Receptors

John D. McNeish; Marsha L. Roach; John E. Hambor; Robert J. Mather; Laura Weibley; John T. Lazzaro; Justin Gazard; Jacob Bradley Schwarz; Robert Volkmann; David W. Machacek; Steve Stice; Laura Zawadzke; Christopher D. O'Donnell; Raymond S. Hurst

Stem cell biology offers advantages to investigators seeking to identify new therapeutic molecules. Specifically, stem cells are genetically stable, scalable for molecular screening, and function in cellular assays for drug efficacy and safety. A key hurdle for drug discoverers of central nervous system disease is a lack of high quality neuronal cells. In the central nervous system, α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) subtype glutamate receptors mediate the vast majority of excitatory neurotransmissions. Embryonic stem (ES) cell protocols were developed to differentiate into neuronal subtypes that express AMPA receptors and were pharmacologically responsive to standard compounds for AMPA potentiation. Therefore, we hypothesized that stem cell-derived neurons should be predictive in high-throughput screens (HTSs). Here, we describe a murine ES cell-based HTS of a 2.4 × 106 compound library, the identification of novel chemical “hits” for AMPA potentiation, structure function relationship of compounds and receptors, and validation of chemical leads in secondary assays using human ES cell-derived neurons. This reporting of murine ES cell derivatives being formatted to deliver HTS of greater than 106 compounds for a specific drug target conclusively demonstrates a new application for stem cells in drug discovery. In the future new molecular entities may be screened directly in human ES or induced pluripotent stem cell derivatives.


Journal of Medicinal Chemistry | 2016

Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design.

Matthew Volgraf; Benjamin D. Sellers; Yu Jiang; Guosheng Wu; Cuong Ly; Elisia Villemure; Richard Pastor; Po-wai Yuen; Aijun Lu; Xifeng Luo; Mingcui Liu; Shun Zhang; Liang Sun; Yuhong Fu; Patrick J. Lupardus; Heidi J.A. Wallweber; Bianca M. Liederer; Gauri Deshmukh; Emile Plise; Suzanne Tay; Paul Reynen; James B Herrington; Amy Gustafson; Yichin Liu; Akim Dirksen; Matthias G. A. Dietz; Yanzhou Liu; Tzu-Ming Wang; Jesse E. Hanson; David H. Hackos

The N-methyl-D-aspartate receptor (NMDAR) is a Na(+) and Ca(2+) permeable ionotropic glutamate receptor that is activated by the coagonists glycine and glutamate. NMDARs are critical to synaptic signaling and plasticity, and their dysfunction has been implicated in a number of neurological disorders, including schizophrenia, depression, and Alzheimers disease. Herein we describe the discovery of potent GluN2A-selective NMDAR positive allosteric modulators (PAMs) starting from a high-throughput screening hit. Using structure-based design, we sought to increase potency at the GluN2A subtype, while improving selectivity against related α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The structure-activity relationship of channel deactivation kinetics was studied using a combination of electrophysiology and protein crystallography. Effective incorporation of these strategies resulted in the discovery of GNE-0723 (46), a highly potent and brain penetrant GluN2A-selective NMDAR PAM suitable for in vivo characterization.


Journal of Medicinal Chemistry | 2016

Discovery of (S)-1-(1-(4-Chloro-3-fluorophenyl)-2-hydroxyethyl)-4-(2-((1-methyl-1H-pyrazol-5-yl)amino)pyrimidin-4-yl)pyridin-2(1H)-one (GDC-0994), an Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Inhibitor in Early Clinical Development.

James F. Blake; Michael Burkard; Jocelyn Chan; Huifen Chen; Kang-Jye Chou; Dolores Díaz; Danette Dudley; John J. Gaudino; Stephen E. Gould; Jonas Grina; Thomas Hunsaker; Lichuan Liu; Matthew Martinson; David Moreno; Lars Mueller; Christine Orr; Patricia Pacheco; Ann Qin; Kevin Rasor; Li Ren; Kirk Robarge; Sheerin Shahidi-Latham; Jeffrey Stults; Francis J. Sullivan; Weiru Wang; JianPing Yin; Aihe Zhou; Marcia Belvin; Mark Merchant; John Moffat

The extracellular signal-regulated kinases ERK1/2 represent an essential node within the RAS/RAF/MEK/ERK signaling cascade that is commonly activated by oncogenic mutations in BRAF or RAS or by upstream oncogenic signaling. While targeting upstream nodes with RAF and MEK inhibitors has proven effective clinically, resistance frequently develops through reactivation of the pathway. Simultaneous targeting of multiple nodes in the pathway, such as MEK and ERK, offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance. Described herein is the discovery and characterization of GDC-0994 (22), an orally bioavailable small molecule inhibitor selective for ERK kinase activity.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and SAR of tolylamine 5-HT6 antagonists

Jamie Singer; Michael William Wilson; Paul D. Johnson; Shelley R. Graham; Leonard W. Cooke; Robin Roof; Lisa H. Gold; Leonard T. Meltzer; Ann M. Janssen; Nicole S. Roush; Jeffrey E. Campbell; Ti-Zhi Su; Susan Hurst; Chad L. Stoner; Jacob Bradley Schwarz

The synthesis and SAR of tolylamines with 5-HT(6) receptor antagonist activity is presented. The amine, core aromatic, peripheral aromatic, and ether linker moieties of HTS hit 1 were modulated and the effect on potency at 5-HT(6) examined. Tolylpiperidine ether 9h was found to possess desirable pharmacokinetic (PK) properties, and was also shown to enhance cognition in the rat novel object recognition paradigm.


Bioorganic & Medicinal Chemistry Letters | 2009

Oxadiazolone bioisosteres of pregabalin and gabapentin.

David Juergen Wustrow; Thomas Richard Belliotti; Thomas Capiris; Clare Octavia Kneen; Justin Stephen Bryans; Mark J. Field; Dic Williams; Ayman El-Kattan; Lisa Buchholz; Jack J. Kinsora; Susan M. Lotarski; Mark G. Vartanian; Charles P. Taylor; Sean Donevan; Andrew John Thorpe; Jacob Bradley Schwarz

A series of oxadiazolone bioisosteres of pregabalin 1 and gabapentin 2 were prepared, and several were found to exhibit similar potency for the alpha(2)-delta subunit of voltage-gated calcium channels. Oxadiazolone 9 derived from 2 achieved low brain uptake but was nevertheless active in models of osteoarthritis. The high clearance associated with compound 9 was postulated to be a consequence of efflux by OAT and/or OCT, and was attenuated on co-administration with cimetidine or probenecid.


Journal of Medicinal Chemistry | 2015

The Discovery and Characterization of the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Potentiator N-{(3S,4S)-4-[4-(5-Cyano-2-thienyl)phenoxy]tetrahydrofuran-3-yl}propane-2-sulfonamide (PF-04958242)

Christopher L. Shaffer; Nandini Chaturbhai Patel; Jacob Bradley Schwarz; Renato J. Scialis; Yunjing Wei; Xinjun J. Hou; Longfei Xie; Kapil Karki; Dianne K. Bryce; Sarah Osgood; William E. Hoffmann; John T. Lazzaro; Cheng Chang; Dina McGinnis; Susan M. Lotarski; JianHua Liu; R. Scott Obach; Mark L. Weber; Laigao Chen; Kenneth Zasadny; Patricia A. Seymour; Christopher J. Schmidt; Mihály Hajós; Raymond S. Hurst; Jayvardhan Pandit; Christopher J. O’Donnell

A unique tetrahydrofuran ether class of highly potent α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiators has been identified using rational and structure-based drug design. An acyclic lead compound, containing an ether-linked isopropylsulfonamide and biphenyl group, was pharmacologically augmented by converting it to a conformationally constrained tetrahydrofuran to improve key interactions with the human GluA2 ligand-binding domain. Subsequent replacement of the distal phenyl motif with 2-cyanothiophene to enhance its potency, selectivity, and metabolic stability afforded N-{(3S,4S)-4-[4-(5-cyano-2-thienyl)phenoxy]tetrahydrofuran-3-yl}propane-2-sulfonamide (PF-04958242, 3), whose preclinical characterization suggests an adequate therapeutic index, aided by low projected human oral pharmacokinetic variability, for clinical studies exploring its ability to attenuate cognitive deficits in patients with schizophrenia.


Organic and Biomolecular Chemistry | 2009

Robust preparation of novel imidazo[5,1-b][1,3,4]oxadiazoles

Tuan P. Tran; Nandini Chaturbhai Patel; Brian Samas; Jacob Bradley Schwarz

Cyclodehydration of amino acid-derived acyl hydrazide amides to the corresponding oxadiazoles was followed by a second dehydration event, smoothly furnishing the novel imidazo[5,1-b][1,3,4]oxadiazole motif .


ACS Medicinal Chemistry Letters | 2017

GluN2A-Selective Pyridopyrimidinone Series of NMDAR Positive Allosteric Modulators with an Improved in Vivo Profile

Elisia Villemure; Matthew Volgraf; Yu Jiang; Guosheng Wu; Cuong Ly; Po-wai Yuen; Aijun Lu; Xifeng Luo; Mingcui Liu; Shun Zhang; Patrick J. Lupardus; Heidi J.A. Wallweber; Bianca M. Liederer; Gauri Deshmukh; Emile Plise; Suzanne Tay; Tzu-Ming Wang; Jesse E. Hanson; David H. Hackos; Kimberly Scearce-Levie; Jacob Bradley Schwarz; Benjamin D. Sellers

The N-methyl-d-aspartate receptor (NMDAR) is an ionotropic glutamate receptor, gated by the endogenous coagonists glutamate and glycine, permeable to Ca2+ and Na+. NMDAR dysfunction is associated with numerous neurological and psychiatric disorders, including schizophrenia, depression, and Alzheimers disease. Recently, we have disclosed GNE-0723 (1), a GluN2A subunit-selective and brain-penetrant positive allosteric modulator (PAM) of NMDARs. This work highlights the discovery of a related pyridopyrimidinone core with distinct structure-activity relationships, despite the structural similarity to GNE-0723. GNE-5729 (13), a pyridopyrimidinone-based NMDAR PAM, was identified with both an improved pharmacokinetic profile and increased selectivity against AMPARs. We also include X-ray structure analysis and modeling to propose hypotheses for the activity and selectivity differences.


Synthetic Communications | 2008

Convenient Preparation of Optically Pure 3‐Aryloxy‐pyrrolidines

Christophe Benard; Rahim Mohammad; Neerja Saraswat; Rudong Shan; Samarendra N. Maiti; Peter G. M. Wuts; Michael Andrew Stier; James Bradow; Jacob Bradley Schwarz

Abstract Chiral 3‐methanesulfonyl‐1‐Boc‐pyrrolidine and piperidine were reacted with sodium phenolates, resulting in a mixture of displacement and elimination products. Following carbamate deprotection and pH adjustment, the 3‐pyrroline and tetrahydropyridine by‐products resulting from elimination were easily removed through aqueous partitioning and/or concentration. Although the pyrrolidines were formed with a high degree of optical purity, slight racemization was observed for the piperidine case because elevated temperatures were required to effect displacement.


Synthetic Communications | 2011

Improved Synthesis of γ-Lactones from Cyclopropyl Cyanoesters

Nandini Chaturbhai Patel; Jacob Bradley Schwarz; Khondaker Islam; Whitney Miller; Tuan P. Tran; Yunjing Wei

Abstract Cyclopropyl cyanoesters 2 were reliably converted to γ-lactones 4 on treatment with aqueous sulfuric acid. The cyanoesters could be easily prepared from ketones or aldehydes in two steps, making this process particularly attractive from an efficiency standpoint.

Collaboration


Dive into the Jacob Bradley Schwarz's collaboration.

Researchain Logo
Decentralizing Knowledge