Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob E. Montgomery is active.

Publication


Featured researches published by Jacob E. Montgomery.


The Journal of Neuroscience | 2007

Regeneration of Inner Retinal Neurons after Intravitreal Injection of Ouabain in Zebrafish

Shane M. Fimbel; Jacob E. Montgomery; Christopher T. Burket; David R. Hyde

We examined the regenerative capacity of the adult zebrafish retina by intravitreal injection of a low ouabain concentration to rapidly damage the ganglion cell layer (GCL) and inner nuclear layer (INL) with minimal photoreceptor cell damage. By 24 h after ouabain injection, maximal numbers of terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL)-positive cells were detected in the INL and GCL, with low numbers of TUNEL-positive cells in the outer nuclear layer. Immunolabeling revealed that ∼85% of the HuC/D-positive amacrine and ganglion cells were lost by 7 d post-ouabain injection (dpi). This ganglion cell loss was consistent with the small, but statistically significant, decrease in the optic nerve diameter. The regeneration response began within 1 dpi with increased proliferating cell nuclear antigen (PCNA) expression in both the INL and GCL. By 3 dpi, PCNA expression is primarily restricted to the Müller glia. By 5 dpi, most of the PCNA expression was localized to neuronal progenitors expressing the olig2:egfp transgene rather than the Müller glia. By 7 dpi, the neuronal progenitors began committing to the ganglion cell fate based on the coexpression of the atoh7:EGFP transgene and the zn5 antigen. The regeneration of ganglion and amacrine cells continued until 60 dpi, when they reached 75% of their uninjected control number. This demonstrates that inner retinal damage, without extensive photoreceptor damage, is sufficient to induce a regeneration response that is marked by the Müller glial cells reentering the cell cycle to produce neuronal progenitor cells that regenerate INL and ganglion cells in the zebrafish retina.


Experimental Eye Research | 2008

Characterization of Müller glia and neuronal progenitors during adult zebrafish retinal regeneration

Ryan Thummel; Sean C. Kassen; Jennifer M. Enright; Craig M. Nelson; Jacob E. Montgomery; David R. Hyde

The adult zebrafish retina exhibits a robust regenerative response following light-induced photoreceptor cell death. This response is initiated by the Müller glia proliferating in the inner nuclear layer (INL), which gives rise to neuronal progenitor cells that continue to divide and migrate to the outer nuclear layer (ONL), where they differentiate into rod and cone photoreceptors. We previously conducted a microarray analysis of retinal gene expression at 16, 31, 51, 68, and 96 h of constant intense-light treatment to identify genes and their corresponding proteins that may be involved in the generation and proliferation of the neuronal progenitor cells. We examined the expression of two candidate transcription factors, Pax6 and Ngn1, and one candidate transgene, olig2:EGFP, in the regenerating light-damaged retina. We compared the temporal and spatial expression patterns of these markers relative to PCNA (proliferating cell nuclear antigen), an established marker for proliferating cells in the zebrafish retina, and the Tg(gfap:EGFP) nt11 transgenic line that specifically labels Müller glial cells. We found that Müller glial cells dedifferentiate during regeneration, based on the loss of cell-specific markers such as GFAP (glial fibrillary acidic protein) and glutamine synthetase following their reentry into the cell cycle to produce neuronal progenitors. Pax6 expression was first detected in the proliferating neuronal progenitors by 51 h of constant light treatment, which is significantly after the Müller glia first reenter the cell cycle after 31h of light. This suggests that Pax6 expression increases in neuronal progenitors, rather than in the proliferating Müller glia. EGFP expression from the olig2 promoter was first detected by 68 h of constant light treatment in the dedifferentiated Müller glia, with Pax6 expressed in the closely associated proliferating neuronal progenitors migrating to the ONL. Both Pax6 and olig2 expression persisted until 3 days post-light treatment, when the neuronal progenitors begin differentiating into new rod and cone photoreceptors. Ngn1 protein expression was initially detected in proliferating neuronal progenitors at 68 h of light treatment. However, Ngn1 expression persisted in a subset of the INL nuclei until 17 days post-light treatment. Using the Tg(gfap:EGFP) nt11 transgenic line, Ngn1 was localized to the Müller glial nuclei that were reestablished following the regenerative response. These markers, therefore, can be used to identify different cell types at particular stages of retinal regeneration: neuronal progenitor formation, proliferation, and the reestablishment of the Müller glia cells. These markers will be important to further characterize the regeneration response in other retinal damage models and to elucidate the defects associated with mutants and morphants that disrupt the regeneration response.


Experimental Eye Research | 2010

Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration

Ryan Thummel; Jennifer M. Enright; Sean C. Kassen; Jacob E. Montgomery; Travis J. Bailey; David R. Hyde

The light-damaged zebrafish retina results in the death of photoreceptor cells and the subsequent regeneration of the missing rod and cone cells. Photoreceptor regeneration initiates with asymmetric Müller glial cell division to produce neuronal progenitor cells, which amplify, migrate to the outer nuclear layer (ONL), and differentiate into both classes of photoreceptor cells. In this study, we examined the role of the Pax6 protein in regeneration. In zebrafish, there are two Pax6 proteins, one encoded by the pax6a gene and the other encoded by the pax6b gene. We intravitreally injected and electroporated morpholinos that were complementary to either the pax6a or pax6b mRNA to knockdown the translation of the corresponding protein. Loss of Pax6b expression did not affect Müller glial cell division, but blocked the subsequent first cell division of the neuronal progenitors. In contrast, the paralogous Pax6a protein was required for later neuronal progenitor cell divisions, which maximized the number of neuronal progenitors. Without neuronal progenitor cell amplification, proliferation of resident ONL rod precursor cells, which can only regenerate rods, increased inversely proportional to the number of INL neuronal progenitor cells. This confirmed that Müller glial-derived neuronal progenitor cells are necessary to regenerate cones and that distinct mechanisms selectively regenerate rod and cone photoreceptors. This work also defines distinct roles for Pax6a and Pax6b in regulating neuronal progenitor cell proliferation in the adult zebrafish retina and increases our understanding of the molecular pathways required for photoreceptor cell regeneration.


The Journal of Comparative Neurology | 2010

A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors

Jacob E. Montgomery; Michael J. Parsons; David R. Hyde

The adult zebrafish retina continuously produces rod photoreceptors from infrequent Müller glial cell division, yielding neuronal progenitor cells that migrate to the outer nuclear layer and become rod precursor cells that are committed to differentiate into rods. Retinal damage models suggested that rod cell death induces regeneration from rod precursor cells, whereas loss of any other retinal neurons activates Müller glia proliferation to produce pluripotent neuronal progenitors that can generate any other neuronal cell type in the retina. We tested this hypothesis by creating two transgenic lines that expressed the E. coli nitroreductase enzyme fused to EGFP (NTR‐EGFP) in only rods. Treating transgenic adults with metronidazole resulted in two rod cell death models. First, killing all rods throughout the Tg(zop:nfsB‐EGFP)nt19 retina induced robust Müller glial proliferation, which yielded clusters of neuronal progenitor cells. In contrast, ablating only a subset of rods across the Tg(zop:nfsB‐EGFP)nt20 retina led to rod precursor, but not Müller glial, cell proliferation. We propose that two different criteria determine whether rod cell death will induce a regenerative response from the Müller glia rather than from the resident rod precursor cells in the ONL. First, there must be a large amount of rod cell death to initiate Müller glia proliferation. Second, the rod cell death must be acute, rather than chronic, to stimulate regeneration from the Müller glia. This suggests that the zebrafish retina possesses mechanisms to quantify the amount and timing of rod cell death. J. Comp. Neurol. 518:800–814, 2010.


Experimental Eye Research | 2010

The inhibitor of phagocytosis, O-phospho-L-serine, suppresses Müller glia proliferation and cone cell regeneration in the light-damaged zebrafish retina

Travis J. Bailey; Sara L. Fossum; Shane M. Fimbel; Jacob E. Montgomery; David R. Hyde

The damaged zebrafish retina replaces lost neurons through a regenerative response that initiates with the asymmetric cell division of Müller glia to produce neuronal progenitor cells that proliferate and migrate to the damaged retinal layer, where they differentiate into the lost neuronal cell types. Because Müller glia are known to phagocytose apoptotic retinal cells during development, we tested if Müller glia engulfed apoptotic rod cell bodies in light-damaged retinas. After 24h of constant intense light, damaged retinas revealed both a strong nuclear TUNEL signal in photoreceptors and a weak cytoplasmic TUNEL signal in Müller glia, although Müller glial apoptosis is not observed in the light-damaged retina. Light damage of a rod-specific transgenic reporter line, Tg(XlRho:EGFP)(fl1), resulted in some Müller glia containing both TUNEL signal and EGFP, which indicated that this subset of Müller glia engulfed apoptotic photoreceptor cell bodies. To determine if phagocytosis induced the Müller glial proliferative response in the light-damaged retina, we utilized O-phospho-l-serine (L-SOP), a molecule that mimics the phosphatidylserine head group and partially blocks microglial phagocytosis of apoptotic cells. Intravitreal injection of L-SOP immediately prior to beginning constant intense light treatment: i) did not significantly reduce light-induced photoreceptor cell death, ii) significantly reduced the number of PCNA-positive Müller glia, and iii) significantly reduced the number of cone photoreceptors in the regenerated retina relative to control retinas. Because L-SOP is also a specific group III metabotropic glutamate receptor (mGluR) agonist, we also tested if the more potent specific group III agonist, L-2-amino-4-phosphonobutyrate (L-AP4), the specific group III antagonist (RS)-α-Methylserine-O-phosphate (MSOP) or the specific group I antagonist, L-2-amino-3-phophonopropanoic acid (L-AP3) affected Müller glial proliferation. We found no changes with any of these factors compared to control retinas, revealing that metabotropic glutamate receptors were not necessary in the Müller glia proliferative response. Furthermore, ascl1a and stat3 expression were unaffected in either the L-SOP or MSOP-injected retinas relative to controls, suggesting L-SOP disrupts Müller glia proliferation subsequent to or in parallel with ascl1a and stat3 activation. This implies that at least one signaling mechanism, in addition to the process disrupted by L-SOP, is required to activate Müller glia proliferation in the light-damaged retina.


Developmental Neurobiology | 2016

Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish.

Jacob E. Montgomery; Timothy D. Wiggin; Luis Rivera-Pérez; Christina Lillesaar; Mark A. Masino

Zebrafish intraspinal serotonergic neuron (ISN) morphology and distribution have been examined in detail at different ages; however, some aspects of the development of these cells remain unclear. Although antibodies to serotonin (5‐HT) have detected ISNs in the ventral spinal cord of embryos, larvae, and adults, the only tryptophan hydroxylase (tph) transcript that has been described in the spinal cord is tph1a. Paradoxically, spinal tph1a is only expressed transiently in embryos, which brings the source of 5‐HT in the ISNs of larvae and adults into question. Because the pet1 and tph2 promoters drive transgene expression in the spinal cord, we hypothesized that tph2 is expressed in spinal cords of zebrafish larvae. We confirmed this hypothesis through in situ hybridization. Next, we used 5‐HT antibody labeling and transgenic markers of tph2‐expressing neurons to identify a transient population of ISNs in embryos that was distinct from ISNs that appeared later in development. The existence of separate ISN populations may not have been recognized previously due to their shared location in the ventral spinal cord. Finally, we used transgenic markers and immunohistochemical labeling to identify the transient ISN population as GABAergic Kolmer‐Agduhr double‐prime (KA″) neurons. Altogether, this study revealed a novel developmental paradigm in which KA″ neurons are transiently serotonergic before the appearance of a stable population of tph2‐expressing ISNs.


Developmental Neurobiology | 2018

Intraspinal serotonergic signaling suppresses locomotor activity in larval zebrafish: Intraspinal Serotonergic Neurons

Jacob E. Montgomery; Sarah Wahlstrom-Helgren; Timothy D. Wiggin; Brittany M. Corwin; Christina Lillesaar; Mark A. Masino

Serotonin (5HT) is a modulator of many vital processes in the spinal cord (SC), such as production of locomotion. In the larval zebrafish, intraspinal serotonergic neurons (ISNs) are a source of spinal 5HT that, despite the availability of numerous genetic and optical tools, has not yet been directly shown to affect the spinal locomotor network. In order to better understand the functions of ISNs, we used a combination of strategies to investigate ISN development, morphology, and function. ISNs were optically isolated from one another by photoconverting Kaede fluorescent protein in individual cells, permitting morphometric analysis as they developed in vivo. ISN neurite lengths and projection distances exhibited the greatest amount of change between 3 and 4 days post‐fertilization (dpf) and appeared to stabilize by 5 dpf. Overall ISN innervation patterns were similar between cells and between SC regions. ISNs possessed rostrally‐extending neurites resembling dendrites and a caudally‐extending neurite resembling an axon, which terminated with an enlarged growth cone‐like structure. Interestingly, these enlargements remained even after neurite extension had ceased. Functionally, application of exogenous 5HT reduced spinally‐produced motor nerve bursting. A selective 5HT reuptake inhibitor and ISN activation with channelrhodopsin‐2 each produced similar effects to 5HT, indicating that spinally‐intrinsic 5HT originating from the ISNs has an inhibitory effect on the spinal locomotor network. Taken together this suggests that the ISNs are morphologically mature by 5 dpf and supports their involvement in modulating the activity of the spinal locomotor network.


Developmental Neurobiology | 2007

Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish

Sean C. Kassen; Vijay Ramanan; Jacob E. Montgomery; Christopher T. Burket; Chang Gong Liu; Thomas S. Vihtelic; David R. Hyde


Developmental Neurobiology | 2008

Inhibition of Müller glial cell division blocks regeneration of the light-damaged zebrafish retina

Ryan Thummel; Sean C. Kassen; Jacob E. Montgomery; Jennifer M. Enright; David R. Hyde


Transgenic Research | 2008

Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters

Christopher T. Burket; Jacob E. Montgomery; Ryan Thummel; Sean C. Kassen; Matthew C. LaFave; David M. Langenau; Leonard I. Zon; David R. Hyde

Collaboration


Dive into the Jacob E. Montgomery's collaboration.

Top Co-Authors

Avatar

David R. Hyde

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Sean C. Kassen

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge