Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob Johansson is active.

Publication


Featured researches published by Jacob Johansson.


Personality and Social Psychology Bulletin | 2010

The Attractive Female Body Weight and Female Body Dissatisfaction in 26 Countries Across 10 World Regions: Results of the International Body Project I

Viren Swami; David A. Frederick; Toivo Aavik; Lidia Alcalay; Jüri Allik; Donna Anderson; Sonny Andrianto; Arvind Arora; Åke Brännström; John D. Cunningham; Dariusz Danel; Krystyna Doroszewicz; Gordon B. Forbes; Adrian Furnham; Corina U. Greven; Jamin Halberstadt; Shuang Hao; Tanja Haubner; Choon Sup Hwang; Mary Inman; Jas Laile Suzana Binti Jaafar; Jacob Johansson; Jaehee Jung; As̨kın Keser; Uta Kretzschmar; Lance Lachenicht; Norman P. Li; Kenneth D. Locke; Jan-Erik Lönnqvist; Christy Lopez

This study reports results from the first International Body Project (IBP-I), which surveyed 7,434 individuals in 10 major world regions about body weight ideals and body dissatisfaction. Participants completed the female Contour Drawing Figure Rating Scale (CDFRS) and self-reported their exposure to Western and local media. Results indicated there were significant cross-regional differences in the ideal female figure and body dissatisfaction, but effect sizes were small across high-socioeconomic-status (SES) sites. Within cultures, heavier bodies were preferred in low-SES sites compared to high-SES sites in Malaysia and South Africa (ds = 1.94-2.49) but not in Austria. Participant age, body mass index (BMI), and Western media exposure predicted body weight ideals. BMI and Western media exposure predicted body dissatisfaction among women. Our results show that body dissatisfaction and desire for thinness is commonplace in high-SES settings across world regions, highlighting the need for international attention to this problem.


Tree Physiology | 2012

Modeling carbon allocation in trees: a search for principles

Oskar Franklin; Jacob Johansson; Roderick C. Dewar; Ulf Dieckmann; Ross E. McMurtrie; Åke Brännström; Ray Dybzinski

We review approaches to predicting carbon and nitrogen allocation in forest models in terms of their underlying assumptions and their resulting strengths and limitations. Empirical and allometric methods are easily developed and computationally efficient, but lack the power of evolution-based approaches to explain and predict multifaceted effects of environmental variability and climate change. In evolution-based methods, allocation is usually determined by maximization of a fitness proxy, either in a fixed environment, which we call optimal response (OR) models, or including the feedback of an individuals strategy on its environment (game-theoretical optimization, GTO). Optimal response models can predict allocation in single trees and stands when there is significant competition only for one resource. Game-theoretical optimization can be used to account for additional dimensions of competition, e.g., when strong root competition boosts root allocation at the expense of wood production. However, we demonstrate that an OR model predicts similar allocation to a GTO model under the root-competitive conditions reported in free-air carbon dioxide enrichment (FACE) experiments. The most evolutionarily realistic approach is adaptive dynamics (AD) where the allocation strategy arises from eco-evolutionary dynamics of populations instead of a fitness proxy. We also discuss emerging entropy-based approaches that offer an alternative thermodynamic perspective on allocation, in which fitness proxies are replaced by entropy or entropy production. To help develop allocation models further, the value of wide-ranging datasets, such as FLUXNET, could be greatly enhanced by ancillary measurements of driving variables, such as water and soil nitrogen availability.


Evolution | 2008

EVOLUTIONARY RESPONSES TO ENVIRONMENTAL CHANGES: HOW DOES COMPETITION AFFECT ADAPTATION?

Jacob Johansson

Abstract The role and importance of ecological interactions for evolutionary responses to environmental changes is to large extent unknown. Here it is shown that interspecific competition may slow down rates of adaptation substantially and fundamentally change patterns of adaptation to long-term environmental changes. In the model investigated here, species compete for resources distributed along an ecological niche space. Environmental change is represented by a slowly moving resource maximum and evolutionary responses of single species are compared with responses of coalitions of two and three competing species. In scenarios with two and three species, species that are favored by increasing resource availability increase in equilibrium population size whereas disfavored species decline in size. Increased competition makes it less favorable for individuals of a disfavored species to occupy a niche close to the maximum and reduces the selection pressure for tracking the moving resource distribution. Individual-based simulations and an analysis using adaptive dynamics show that the combination of weaker selection pressure and reduced population size reduces the evolutionary rate of the disfavored species considerably. If the resource landscape moves stochastically, weak evolutionary responses cause large fluctuations in population size and thereby large extinction risk for competing species, whereas a single species subject to the same environmental variability may track the resource maximum closely and maintain a much more stable population size. Other studies have shown that competitive interactions may amplify changes in mean population sizes due to environmental changes and thereby increase extinction risks. This study accentuates the harmful role of competitive interactions by illustrating that they may also decrease rates of adaptation. The slowdown in evolutionary rates caused by competition may also contribute to explain low rates of morphological change in spite of large environmental fluctuations found in fossil records.


The American Naturalist | 2012

Effects of territory competition and climate change on timing of arrival to breeding grounds: a game-theory approach.

Jacob Johansson; Niclas Jonzén

Phenology is an important part of life history that is gaining increased attention because of recent climate change. We use game theory to model phenological adaptation in migratory birds that compete for territories at their breeding grounds. We investigate how the evolutionarily stable strategy (ESS) for the timing of arrival is affected by changes in the onset of spring, the timing of the resource peak, and the season length. We compare the ESS mean arrival date with the environmental optimum, that is, the mean arrival date that maximizes fitness in the absence of competition. When competition is strong, the ESS mean arrival date responds less than the environmental optimum to shifts in the resource peak but more to changes in the onset of spring. Increased season length may not necessarily affect the environmental optimum but can still advance the ESS mean arrival date. Conversely, shifting a narrow resource distribution may change the environmental optimum without affecting the ESS mean arrival date. The ESS mean arrival date and the environmental optimum may even shift in different directions. Hence, treating phenology as an evolutionary game rather than an optimization problem fundamentally changes what we predict to be an adaptive response to environmental changes.


Games | 2013

The Hitchhiker's Guide to Adaptive Dynamics

Åke Brännström; Jacob Johansson; Niels von Festenberg

Adaptive dynamics is a mathematical framework for studying evolution. It extends evolutionary game theory to account for more realistic ecological dynamics and it can incorporate both frequency- and density-dependent selection. This is a practical guide to adaptive dynamics that aims to illustrate how the methodology can be applied to the study of specific systems. The theory is presented in detail for a single, monomorphic, asexually reproducing population. We explain the necessary terminology to understand the basic arguments in models based on adaptive dynamics, including invasion fitness, the selection gradient, pairwise invasibility plots (PIP), evolutionarily singular strategies, and the canonical equation. The presentation is supported with a worked-out example of evolution of arrival times in migratory birds. We show how the adaptive dynamics methodology can be extended to study evolution in polymorphic populations using trait evolution plots (TEPs). We give an overview of literature that generalises adaptive dynamics techniques to other scenarios, such as sexual, diploid populations, and spatially-structured populations. We conclude by discussing how adaptive dynamics relates to evolutionary game theory and how adaptive-dynamics techniques can be used in speciation research.


Ecology Letters | 2012

Game theory sheds new light on ecological responses to current climate change when phenology is historically mismatched.

Jacob Johansson; Niclas Jonzén

Phenological changes are well documented biological effects of current climate change but their adaptive value and demographic consequences are poorly known. Game theoretical models have shown that deviating from the fitness-maximising phenology can be evolutionary stable under frequency-dependent selection. We study eco-evolutionary responses to climate change when the historical phenology is mismatched in this way. For illustration we model adaptation of arrival dates in migratory birds that compete for territories at their breeding grounds. We simulate climate change by shifting the timing and the length of the favourable season for breeding. We show that initial trends in changes of population densities can be either reinforced or counteracted during the ensuing evolutionary adaptation. We find in total seven qualitatively different population trajectories during the transition to a new evolutionary equilibrium. This surprising diversity of eco-evolutionary responses provides adaptive explanations to the observed variation in phenological responses to recent climate change.


The American Naturalist | 2006

Will Sympatric Speciation Fail due to Stochastic Competitive Exclusion

Jacob Johansson; Jörgen Ripa

Sympatric speciation requires coexistence of the newly formed species. If divergence proceeds by small mutational steps, the new species utilize almost the same resources initially, and full speciation may be impeded by competitive exclusion in stochastic environments. We investigate this primarily ecological problem of sympatric speciation by studying the population dynamics of a diverging asexual population in a fluctuating environment. Correlation between species responses to environmental fluctuation is assumed to decrease with distance in trait space. Rapidly declining correlation in combination with high environmental variability may delay full speciation or even render it impossible. Stochastic extinctions impeding speciation are most likely when correlation decays faster than competition, for example, when demographic stochasticity is strong or when divergence is not accompanied by niche separation, such as in speciation driven entirely by sexual selection. Our general theoretical results show an interesting connection between short‐term ecological dynamics and long‐term, large‐scale evolution.


Global Change Biology | 2013

Climate change and the optimal flowering time of annual plants in seasonal environments

Jacob Johansson; Kjell Bolmgren; Niclas Jonzén

Long-term phenology monitoring has documented numerous examples of changing flowering dates during the last century. A pivotal question is whether these phenological responses are adaptive or not under directionally changing climatic conditions. We use a classic dynamic growth model for annual plants, based on optimal control theory, to find the fitness-maximizing flowering time, defined as the switching time from vegetative to reproductive growth. In a typical scenario of global warming, with advanced growing season and increased productivity, optimal flowering time advances less than the start of the growing season. Interestingly, increased temporal spread in production over the season may either advance or delay the optimal flowering time depending on overall productivity or season length. We identify situations where large phenological changes are necessary for flowering time to remain optimal. Such changes also indicate changed selection pressures. In other situations, the model predicts advanced phenology on a calendar scale, but no selection for early flowering in relation to the start of the season. We also show that the optimum is more sensitive to increased productivity when productivity is low than when productivity is high. All our results are derived using a general, graphical method to calculate the optimal flowering time applicable for a large range of shapes of the seasonal production curve. The model can thus explain apparent maladaptation in phenological responses in a multitude of scenarios of climate change. We conclude that taking energy allocation trade-offs and appropriate time scales into account is critical when interpreting phenological patterns.


Theoretical Population Biology | 2010

The risk of competitive exclusion during evolutionary branching: effects of resource variability, correlation and autocorrelation.

Jacob Johansson; Jörgen Ripa; Nina Kuckländer

Evolutionary branching has been suggested as a mechanism to explain ecological speciation processes. Recent studies indicate however that demographic stochasticity and environmental fluctuations may prevent branching through stochastic competitive exclusion. Here we extend previous theory in several ways; we use a more mechanistic ecological model, we incorporate environmental fluctuations in a more realistic way and we include environmental autocorrelation in the analysis. We present a single, comprehensible analytical result which summarizes most effects of environmental fluctuations on evolutionary branching driven by resource competition. Corroborating earlier findings, we show that branching may be delayed or impeded if the underlying resources have uncorrelated or negatively correlated responses to environmental fluctuations. There is also a strong impeding effect of positive environmental autocorrelation, which can be related to results from recent experiments on adaptive radiation in bacterial microcosms. In addition, we find that environmental fluctuations can lead to cycles of repeated branching and extinction.


The American Naturalist | 2015

Information-Mediated Allee Effects in Breeding Habitat Selection

Kenneth A. Schmidt; Jacob Johansson; Matthew G. Betts

Social information is used widely in breeding habitat selection and provides an efficient means for individuals to select habitat, but the population-level consequences of this process are not well explored. At low population densities, efficiencies may be reduced because there are insufficient information providers to cue high-quality habitat. This constitutes what we call an information-mediated Allee effect. We present the first general model for an information-mediated Allee effect applied to breeding habitat selection and unify personal and social information, Allee effects, and ecological traps into a common framework. In a second model, we consider an explicit mechanism of social information gathering through prospecting on conspecific breeding performance. In each model, we independently vary personal and social information use to demonstrate how dependency on social information may result in either weak or strong Allee effects that, in turn, affect population extinction risk. Abrupt transitions between outcomes can occur through reduced information transfer or small changes in habitat composition. Overall, information-mediated Allee effects may produce positive feedbacks that amplify population declines in species that are already experiencing environmentally driven stressors, such as habitat loss and degradation. Alternatively, social information has the capacity to rescue populations from ecological traps.

Collaboration


Dive into the Jacob Johansson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf Dieckmann

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kjell Bolmgren

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge