Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob M. Zahn is active.

Publication


Featured researches published by Jacob M. Zahn.


PLOS Genetics | 2005

Transcriptional Profiling of Aging in Human Muscle Reveals a Common Aging Signature

Jacob M. Zahn; Rebecca Sonu; Hannes Vogel; Emily Crane; Krystyna Mazan-Mamczarz; Ralph Rabkin; Ronald W. Davis; Kevin G. Becker; Art B. Owen; Stuart K. Kim

We analyzed expression of 81 normal muscle samples from humans of varying ages, and have identified a molecular profile for aging consisting of 250 age-regulated genes. This molecular profile correlates not only with chronological age but also with a measure of physiological age. We compared the transcriptional profile of muscle aging to previous transcriptional profiles of aging in the kidney and the brain, and found a common signature for aging in these diverse human tissues. The common aging signature consists of six genetic pathways; four pathways increase expression with age (genes in the extracellular matrix, genes involved in cell growth, genes encoding factors involved in complement activation, and genes encoding components of the cytosolic ribosome), while two pathways decrease expression with age (genes involved in chloride transport and genes encoding subunits of the mitochondrial electron transport chain). We also compared transcriptional profiles of aging in humans to those of the mouse and fly, and found that the electron transport chain pathway decreases expression with age in all three organisms, suggesting that this may be a public marker for aging across species.


PLOS Genetics | 2005

AGEMAP: A Gene Expression Database for Aging in Mice

Jacob M. Zahn; Suresh Poosala; Art B. Owen; Donald K. Ingram; Ana Lustig; Arnell Carter; Ashani T. Weeraratna; Dennis D. Taub; Myriam Gorospe; Krystyna Mazan-Mamczarz; Edward G. Lakatta; Kenneth R. Boheler; Xiangru Xu; Mark P. Mattson; Geppino Falco; Minoru S.H. Ko; David Schlessinger; Jeffrey Firman; Sarah K. Kummerfeld; William H. Wood; Alan B. Zonderman; Stuart K. Kim; Kevin G. Becker

We present the AGEMAP (Atlas of Gene Expression in Mouse Aging Project) gene expression database, which is a resource that catalogs changes in gene expression as a function of age in mice. The AGEMAP database includes expression changes for 8,932 genes in 16 tissues as a function of age. We found great heterogeneity in the amount of transcriptional changes with age in different tissues. Some tissues displayed large transcriptional differences in old mice, suggesting that these tissues may contribute strongly to organismal decline. Other tissues showed few or no changes in expression with age, indicating strong levels of homeostasis throughout life. Based on the pattern of age-related transcriptional changes, we found that tissues could be classified into one of three aging processes: (1) a pattern common to neural tissues, (2) a pattern for vascular tissues, and (3) a pattern for steroid-responsive tissues. We observed that different tissues age in a coordinated fashion in individual mice, such that certain mice exhibit rapid aging, whereas others exhibit slow aging for multiple tissues. Finally, we compared the transcriptional profiles for aging in mice to those from humans, flies, and worms. We found that genes involved in the electron transport chain show common age regulation in all four species, indicating that these genes may be exceptionally good markers of aging. However, we saw no overall correlation of age regulation between mice and humans, suggesting that aging processes in mice and humans may be fundamentally different.


PLOS Biology | 2004

A Transcriptional Profile of Aging in the Human Kidney

Graham Rodwell; Rebecca Sonu; Jacob M. Zahn; James Lund; Julie Wilhelmy; Lingli Wang; Wenzhong Xiao; Michael Mindrinos; Emily Crane; Eran Segal; Bryan D. Myers; James D. Brooks; Ronald W. Davis; John P. Higgins; Art B. Owen; Stuart K. Kim

In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age.


PLOS Genetics | 2009

Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging.

Heather E. Wheeler; E. Jeffrey Metter; Toshiko Tanaka; Devin Absher; John P. Higgins; Jacob M. Zahn; Julie Wilhelmy; Ronald W. Davis; Andrew Singleton; Richard M. Myers; Luigi Ferrucci; Stuart K. Kim

Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6×10−5, empirical p = 0.01) that explains 1%–2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans.


Journal of Translational Medicine | 2009

Identification of a biomarker panel using a multiplex proximity ligation assay improves accuracy of pancreatic cancer diagnosis

Stephanie T. Chang; Jacob M. Zahn; Joe Horecka; Pamela L. Kunz; James M. Ford; George A. Fisher; Quynh T. Le; Daniel T. Chang; Hanlee P. Ji; Albert C. Koong

BackgroundPancreatic cancer continues to prove difficult to clinically diagnose. Multiple simultaneous measurements of plasma biomarkers can increase sensitivity and selectivity of diagnosis. Proximity ligation assay (PLA) is a highly sensitive technique for multiplex detection of biomarkers in plasma with little or no interfering background signal.MethodsWe examined the plasma levels of 21 biomarkers in a clinically defined cohort of 52 locally advanced (Stage II/III) pancreatic ductal adenocarcinoma cases and 43 age-matched controls using a multiplex proximity ligation assay. The optimal biomarker panel for diagnosis was computed using a combination of the PAM algorithm and logistic regression modeling. Biomarkers that were significantly prognostic for survival in combination were determined using univariate and multivariate Cox survival models.ResultsThree markers, CA19-9, OPN and CHI3L1, measured in multiplex were found to have superior sensitivity for pancreatic cancer vs. CA19-9 alone (93% vs. 80%). In addition, we identified two markers, CEA and CA125, that when measured simultaneously have prognostic significance for survival for this clinical stage of pancreatic cancer (p < 0.003).ConclusionsA multiplex panel assaying CA19-9, OPN and CHI3L1 in plasma improves accuracy of pancreatic cancer diagnosis. A panel assaying CEA and CA125 in plasma can predict survival for this clinical cohort of pancreatic cancer patients.


PLOS ONE | 2011

A Flexible Approach for Highly Multiplexed Candidate Gene Targeted Resequencing

Georges Natsoulis; John M. Bell; Hua Xu; Jason D. Buenrostro; Heather Ordonez; Susan M. Grimes; Daniel E. Newburger; Michael Dam Jensen; Jacob M. Zahn; Nancy R. Zhang; Hanlee P. Ji

We have developed an integrated strategy for targeted resequencing and analysis of gene subsets from the human exome for variants. Our capture technology is geared towards resequencing gene subsets substantially larger than can be done efficiently with simplex or multiplex PCR but smaller in scale than exome sequencing. We describe all the steps from the initial capture assay to single nucleotide variant (SNV) discovery. The capture methodology uses in-solution 80-mer oligonucleotides. To provide optimal flexibility in choosing human gene targets, we designed an in silico set of oligonucleotides, the Human OligoExome, that covers the gene exons annotated by the Consensus Coding Sequencing Project (CCDS). This resource is openly available as an Internet accessible database where one can download capture oligonucleotides sequences for any CCDS gene and design custom capture assays. Using this resource, we demonstrated the flexibility of this assay by custom designing capture assays ranging from 10 to over 100 gene targets with total capture sizes from over 100 Kilobases to nearly one Megabase. We established a method to reduce capture variability and incorporated indexing schemes to increase sample throughput. Our approach has multiple applications that include but are not limited to population targeted resequencing studies of specific gene subsets, validation of variants discovered in whole genome sequencing surveys and possible diagnostic analysis of disease gene subsets. We also present a cost analysis demonstrating its cost-effectiveness for large population studies.


Clinical Cancer Research | 2010

Abstract B6: Identification of novel mutations in the inhibitory adaptor protein LNK in patients with JAK2 V617F-negative and -positive chronic myeloproliferative neoplasms

Stephen T. Oh; Jacob M. Zahn; Erin F. Simonds; John I. Bell; Georges Natsoulis; Jason Buenstro; Carol Jones; Matthew B. Hale; Yury Goltsev; Kenneth D. Gibbs; Jason D. Merker; James L. Zehnder; Ronald W. Davis; Garry P. Nolan; Hanlee P. Ji; Jason Gotlib

Dysregulated JAK-STAT signaling is a hallmark of myeloproliferative neoplasms (MPNs), as evidenced by the identification of activating mutations in JAK2, and the thrombopoietin (TPO) receptor MPL in a subset of MPN patients. Clinical trials with highly specific inhibitors of JAK2 are currently ongoing, and clinical responses have been observed in the majority of MPN patients, validating JAK2 as an important therapeutic target in these patients. In addition, responses have been observed in patients lacking known mutations in JAK2 or MPL, suggesting that other regulatory elements in this pathway are altered. However, the molecular basis for this observation is not well understood. One regulator of JAK-STAT signaling is LNK (SH2B3), a member of a family of adaptor proteins that share several structural motifs, including a proline-rich N-terminal dimerization domain (Pro/DD), a pleckstrin homology (PH) domain, an SH2 domain, and a conserved C-terminal tyrosine residue. LNK binds to MPL via its SH2 domain and co-localizes to the plasma membrane via its PH domain. Upon cytokine stimulation with TPO, LNK binds strongly to JAK2 and inhibits downstream STAT activation, thereby providing critical negative feedback regulation. LNK-/- mice exhibit an MPN phenotype, including an expanded hematopoietic stem cell compartment, megakaryocyte hyperplasia, splenomegaly, leukocytosis, and thrombocytosis. We sequenced LNK in a cohort of MPN patients, leading to the identification of novel mutations in 7/159 (4.4%) patients. One patient with JAK2 V617F-negative primary myelofibrosis (PMF) exhibited a 5 base-pair deletion and missense mutation (DEL) leading to a premature stop codon and loss of the PH and SH2 domains. Six additional patients were found to have point mutations affecting conserved residues in the PH domain. Interestingly, a point mutation leading to an E208Q substitution was found in one JAK2 V617F- negative patient with essential thrombocythemia (ET), as well as one JAK2 V617F-positive ET patient. Similarly, a P242S substitution was also found in both a JAK2 V617F-negative ET patient, as well as a JAK2 V617F-positive patient with post-polycythemic myelofibrosis. These latter findings suggest that even in the presence of the JAK2 V617F mutation, abrogation of LNK function may be a cooperating pathogenetic mutation. TPO-dependent BaF3-MPL cells transduced with the LNK DEL mutant exhibited augmented and sustained TPO-dependent growth and activation of JAK2-STAT3/5. The E208Q mutation resulted in partial loss of LNK function, suggesting that LNK mutations may confer a spectrum of phenotypes. Primary patient samples from MPN patients bearing the LNK DEL and E208Q mutations exhibited aberrant JAK-STAT activation, and cytokine-responsive CD34+ early progenitors were abnormally abundant. The STAT3/5 activation response was abrogated by JAK inhibition, suggesting that JAK2 inhibitors may be a feasible option for MPN patients bearing LNK mutations. Our identification of mutations in LNK, the first reported in human disease, demonstrates that loss of JAK-STAT negative feedback control is a novel mechanism of MPN pathogenesis. As each of these LNK mutations localizes to the PH domain and appears to be heterozygous, mislocalized mutant LNK may exert a dominant negative effect by binding and sequestering wild-type LNK. These findings may also partly explain why some MPN patients lacking JAK2 or MPL mutations respond to treatment with JAK2 inhibitors, and highlight the importance of a more complete understanding of the role of inhibitory pathways in MPN pathogenesis. Citation Information: Clin Cancer Res 2010;16(14 Suppl):B6.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Cell intrinsic alterations underlie hematopoietic stem cell aging

Derrick J. Rossi; David Bryder; Jacob M. Zahn; Henrik Ahlenius; Rebecca Sonu; Amy J. Wagers; Irving L. Weissman


Current Opinion in Biotechnology | 2007

Systems biology of aging in four species.

Jacob M. Zahn; Stuart K. Kim


Archive | 2006

Signatures for human aging

Stuart K. Kim; Jacob M. Zahn; Graham Rodwell; Art B. Owen

Collaboration


Dive into the Jacob M. Zahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge