Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacob O. Kitzman is active.

Publication


Featured researches published by Jacob O. Kitzman.


Science | 2012

A High-Coverage Genome Sequence from an Archaic Denisovan Individual

Matthias Meyer; Martin Kircher; Marie Theres Gansauge; Heng Li; Fernando Racimo; Swapan Mallick; Joshua G. Schraiber; Flora Jay; Kay Prüfer; Cesare de Filippo; Peter H. Sudmant; Can Alkan; Qiaomei Fu; Ron Do; Nadin Rohland; Arti Tandon; Michael Siebauer; Richard E. Green; Katarzyna Bryc; Adrian W. Briggs; Udo Stenzel; Jesse Dabney; Jay Shendure; Jacob O. Kitzman; Michael F. Hammer; Michael V. Shunkov; Anatoli P. Derevianko; Nick Patterson; Aida M. Andrés; Evan E. Eichler

Ancient Genomics The Denisovans were archaic humans closely related to Neandertals, whose populations overlapped with the ancestors of modern-day humans. Using a single-stranded library preparation method, Meyer et al. (p. 222, published online 30 August) provide a detailed analysis of a high-quality Denisovan genome. The genomic sequence provides evidence for very low rates of heterozygosity in the Denisova, probably not because of recent inbreeding, but instead because of a small population size. The genome sequence also illuminates the relationships between humans and archaics, including Neandertals, and establishes a catalog of genetic changes within the human lineage. A close-up look provides clues to the relationships between modern humans, Denisovans, and Neandertals. We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30×) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.


Nature | 2014

The complete genome sequence of a Neanderthal from the Altai Mountains

Kay Prüfer; Fernando Racimo; Nick Patterson; Flora Jay; Sriram Sankararaman; Susanna Sawyer; Anja Heinze; Gabriel Renaud; Peter H. Sudmant; Cesare de Filippo; Heng Li; Swapan Mallick; Michael Dannemann; Qiaomei Fu; Martin Kircher; Martin Kuhlwilm; Michael Lachmann; Matthias Meyer; Matthias Ongyerth; Michael Siebauer; Christoph Theunert; Arti Tandon; Priya Moorjani; Joseph K. Pickrell; James C. Mullikin; Samuel H. Vohr; Richard E. Green; Ines Hellmann; Philip L. F. Johnson; Hélène Blanché

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.


Nature Genetics | 2009

Personalized copy number and segmental duplication maps using next-generation sequencing

Can Alkan; Jeffrey M. Kidd; Tomas Marques-Bonet; Gozde Aksay; Francesca Antonacci; Fereydoun Hormozdiari; Jacob O. Kitzman; Carl Baker; Maika Malig; Onur Mutlu; S. Cenk Sahinalp; Richard A. Gibbs; Evan E. Eichler

Despite their importance in gene innovation and phenotypic variation, duplicated regions have remained largely intractable owing to difficulties in accurately resolving their structure, copy number and sequence content. We present an algorithm (mrFAST) to comprehensively map next-generation sequence reads, which allows for the prediction of absolute copy-number variation of duplicated segments and genes. We examine three human genomes and experimentally validate genome-wide copy number differences. We estimate that, on average, 73–87 genes vary in copy number between any two individuals and find that these genic differences overwhelmingly correspond to segmental duplications (odds ratio = 135; P < 2.2 × 10−16). Our method can distinguish between different copies of highly identical genes, providing a more accurate assessment of gene content and insight into functional constraint without the limitations of array-based technology.


Science | 2010

Diversity of human copy number variation and multicopy genes

Peter H. Sudmant; Jacob O. Kitzman; Francesca Antonacci; Can Alkan; Maika Malig; Anya Tsalenko; Nick Sampas; Laurakay Bruhn; Jay Shendure; Evan E. Eichler

Evolution, Gene Number, and Disease Slight variations in the numbers of copies of genes influence human disease and other characters. Variants can be hard to detect when they lie in heavily duplicated and widely similar regions of sequence known as “dark matter.” Sudmant et al. (p. 641) have methods to tease apart the duplicated regions to reveal singly unique nucleotide identifiers. These have turned out to be among the most variable seen in different human population groups—most notably among genes for neurodevelopment and neurological diseases. Such polymorphisms can be genotyped with specificity and may help us understand how variation in copy number may affect human evolution and disease. Specific gene copies can be identified in regions of high copy number variability in the human genome. Copy number variants affect both disease and normal phenotypic variation, but those lying within heavily duplicated, highly identical sequence have been difficult to assay. By analyzing short-read mapping depth for 159 human genomes, we demonstrated accurate estimation of absolute copy number for duplications as small as 1.9 kilobase pairs, ranging from 0 to 48 copies. We identified 4.1 million “singly unique nucleotide” positions informative in distinguishing specific copies and used them to genotype the copy and content of specific paralogs within highly duplicated gene families. These data identify human-specific expansions in genes associated with brain development, reveal extensive population genetic diversity, and detect signatures consistent with gene conversion in the human species. Our approach makes ~1000 genes accessible to genetic studies of disease association.


GigaScience | 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen Chi Chou; Jacques Corbeil; Cristian Del Fabbro; Roderick R. Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Science Translational Medicine | 2012

Noninvasive Whole-Genome Sequencing of a Human Fetus

Jacob O. Kitzman; Matthew W. Snyder; Mario Ventura; Alexandra P. Lewis; Ruolan Qiu; La Vone E Simmons; Hilary S. Gammill; Craig E. Rubens; Donna A. Santillan; Jeffrey C. Murray; Holly K. Tabor; Michael J. Bamshad; Evan E. Eichler; Jay Shendure

Sequencing of cell-free fetal-derived DNA from maternal plasma provides a noninvasive way to predict the fetal genome sequence. Not Your Mother’s Genome There are more than 3000 single-gene (Mendelian) disorders that are individually rare but collectively affect ~1% of births. Currently, only a few specific disorders are screened for during pregnancy, and definitive diagnosis requires invasive procedures such as amniocentesis. An ideal prenatal genetic diagnostic would noninvasively screen for all Mendelian disorders early in pregnancy. Exploiting the observation that ~10% of DNA floating freely in a pregnant woman’s plasma originates from the fetus she carries, several groups have developed DNA sequencing–based tests for conditions such as trisomy 21, the genetic cause of Down syndrome. Although these tests may readily detect gross abnormalities such as an extra copy of an entire chromosome, the noninvasive determination of a complete fetal genome sequence has remained out of reach. Here, Kitzman et al. reconstruct the whole-genome sequence of a human fetus using samples obtained noninvasively during the second trimester, including DNA from the pregnant mother, DNA from the father, and “cell-free” DNA from the pregnant mother’s plasma (a mixture of the maternal and fetal genomes). A big challenge for the authors was to be able to predict which genetic variants were passed from mother to fetus, because the overwhelming majority of DNA in the pregnant mother’s plasma derives from her genome rather than that of the fetus. To overcome this problem, the authors applied a recently developed technique to resolve the mother’s “haplotypes”—groups of genetic variants residing on the same chromosomes—and then used these groups to accurately predict inheritance. Another challenge was the identification of new mutations in the genome of the fetus. The authors demonstrate that, in principle, such mutations can be sensitively detected and triaged for validation. Although these methods must be refined and their costs driven down, this study hints that comprehensive, noninvasive prenatal screening for Mendelian disorders may be clinically feasible in the near future. Analysis of cell-free fetal DNA in maternal plasma holds promise for the development of noninvasive prenatal genetic diagnostics. Previous studies have been restricted to detection of fetal trisomies, to specific paternally inherited mutations, or to genotyping common polymorphisms using material obtained invasively, for example, through chorionic villus sampling. Here, we combine genome sequencing of two parents, genome-wide maternal haplotyping, and deep sequencing of maternal plasma DNA to noninvasively determine the genome sequence of a human fetus at 18.5 weeks of gestation. Inheritance was predicted at 2.8 × 106 parental heterozygous sites with 98.1% accuracy. Furthermore, 39 of 44 de novo point mutations in the fetal genome were detected, albeit with limited specificity. Subsampling these data and analyzing a second family trio by the same approach indicate that parental haplotype blocks of ~300 kilo–base pairs combined with shallow sequencing of maternal plasma DNA is sufficient to substantially determine the inherited complement of a fetal genome. However, ultradeep sequencing of maternal plasma DNA is necessary for the practical detection of fetal de novo mutations genome-wide. Although technical and analytical challenges remain, we anticipate that noninvasive analysis of inherited variation and de novo mutations in fetal genomes will facilitate prenatal diagnosis of both recessive and dominant Mendelian disorders.


Genome Biology | 2010

Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition

Andrew Adey; Hilary G. Morrison; Asan; Xu Xun; Jacob O. Kitzman; Emily H. Turner; Bethany Stackhouse; Alexandra P. MacKenzie; Nicholas C Caruccio; Xiuqing Zhang; Jay Shendure

We characterize and extend a highly efficient method for constructing shotgun fragment libraries in which transposase catalyzes in vitro DNA fragmentation and adaptor incorporation simultaneously. We apply this method to sequencing a human genome and find that coverage biases are comparable to those of conventional protocols. We also extend its capabilities by developing protocols for sub-nanogram library construction, exome capture from 50 ng of input DNA, PCR-free and colony PCR library construction, and 96-plex sample indexing.


Nature Biotechnology | 2011

Haplotype-resolved genome sequencing of a Gujarati Indian individual

Jacob O. Kitzman; Alexandra P. MacKenzie; Andrew Adey; Joseph Hiatt; Rupali P Patwardhan; Peter H. Sudmant; Sarah B. Ng; Can Alkan; Ruolan Qiu; Evan E. Eichler; Jay Shendure

Haplotype information is essential to the complete description and interpretation of genomes, genetic diversity and genetic ancestry. Although individual human genome sequencing is increasingly routine, nearly all such genomes are unresolved with respect to haplotype. Here we combine the throughput of massively parallel sequencing with the contiguity information provided by large-insert cloning to experimentally determine the haplotype-resolved genome of a South Asian individual. A single fosmid library was split into a modest number of pools, each providing ∼3% physical coverage of the diploid genome. Sequencing of each pool yielded reads overwhelmingly derived from only one homologous chromosome at any given location. These data were combined with whole-genome shotgun sequence to directly phase 94% of ascertained heterozygous single nucleotide polymorphisms (SNPs) into long haplotype blocks (N50 of 386 kilobases (kbp)). This method also facilitates the analysis of structural variation, for example, to anchor novel insertions to specific locations and haplotypes.


Nature | 2016

Genome evolution in the allotetraploid frog Xenopus laevis

Adam Session; Yoshinobu Uno; Taejoon Kwon; Jarrod Chapman; Atsushi Toyoda; Shuji Takahashi; Akimasa Fukui; Akira Hikosaka; Atsushi Suzuki; Mariko Kondo; Simon J. van Heeringen; Ian Quigley; Sven Heinz; Hajime Ogino; Haruki Ochi; Uffe Hellsten; Jessica B. Lyons; Oleg Simakov; Nicholas H. Putnam; Jonathan Stites; Yoko Kuroki; Toshiaki Tanaka; Tatsuo Michiue; Minoru Watanabe; Ozren Bogdanović; Ryan Lister; Georgios Georgiou; Sarita S. Paranjpe; Ila van Kruijsbergen; Shengquiang Shu

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of ‘fossil’ transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17–18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.


Nature Biotechnology | 2013

Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions

Joshua N. Burton; Andrew Adey; Rupali P Patwardhan; Ruolan Qiu; Jacob O. Kitzman; Jay Shendure

Genomes assembled de novo from short reads are highly fragmented relative to the finished chromosomes of Homo sapiens and key model organisms generated by the Human Genome Project. To address this problem, we need scalable, cost-effective methods to obtain assemblies with chromosome-scale contiguity. Here we show that genome-wide chromatin interaction data sets, such as those generated by Hi-C, are a rich source of long-range information for assigning, ordering and orienting genomic sequences to chromosomes, including across centromeres. To exploit this finding, we developed an algorithm that uses Hi-C data for ultra-long-range scaffolding of de novo genome assemblies. We demonstrate the approach by combining shotgun fragment and short jump mate-pair sequences with Hi-C data to generate chromosome-scale de novo assemblies of the human, mouse and Drosophila genomes, achieving—for the human genome—98% accuracy in assigning scaffolds to chromosome groups and 99% accuracy in ordering and orienting scaffolds within chromosome groups. Hi-C data can also be used to validate chromosomal translocations in cancer genomes.

Collaboration


Dive into the Jacob O. Kitzman's collaboration.

Top Co-Authors

Avatar

Jay Shendure

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Hiatt

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilary S. Gammill

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Ruolan Qiu

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akash Kumar

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge