Jacobus J. Bergh
North-West University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacobus J. Bergh.
Bioorganic & Medicinal Chemistry | 2010
Belinda Strydom; Sarel F. Malan; Neal Castagnoli; Jacobus J. Bergh; Jacobus P. Petzer
Based on recent reports that several (E)-8-styrylcaffeinyl analogues are potent reversible inhibitors of monoamine oxidase B (MAO-B), a series of 8-benzyloxycaffeinyl analogues were synthesized and evaluated as inhibitors of baboon liver MAO-B and recombinant human MAO-A and -B. The 8-benzyloxycaffeinyl analogues were found to inhibit reversibly both MAO isoforms with enzyme-inhibitor dissociation constants (K(i) values) ranging from 0.14 to 1.30 microM for the inhibition of human MAO-A, and 0.023-0.59 microM for the inhibition of human MAO-B. The most potent MAO-A inhibitor was 8-(3-methylbenzyloxy)caffeine while 8-(3-bromobenzyloxy)caffeine was the most potent MAO-B inhibitor. The analogues inhibited human and baboon MAO-B with similar potencies. A quantitative structure-activity relationship (QSAR) study indicated that the MAO-B inhibition potencies of the 8-benzyloxycaffeinyl analogues are dependent on the Hansch lipophilicity (pi) and Hammett electronic (sigma) constants of the substituents at C-3 of the benzyloxy ring. Electron-withdrawing substituents with a high degree of lipophilicity enhance inhibition potency. These results are discussed with reference to possible binding orientations of the inhibitors within the active site cavities of MAO-A and -B.
Bioorganic & Medicinal Chemistry | 2008
Judey Pretorius; Sarel F. Malan; Neal Castagnoli; Jacobus J. Bergh; Jacobus P. Petzer
The adenosine A(2A) receptor has emerged as an attractive target for the treatment of Parkinsons disease (PD). Evidence suggests that antagonists of the A(2A) receptor (A(2A) antagonists) may be neuroprotective and may help to alleviate the symptoms of PD. We have reported recently that several members of the (E)-8-styrylcaffeine class of A(2A) antagonists also are potent inhibitors of monoamine oxidase B (MAO-B). Since MAO-B inhibitors are known to possess anti-parkinsonian properties, dual-target-directed drugs that block both MAO-B and A(2A) receptors may have enhanced value in the management of PD. In an attempt to explore this concept further we have prepared three additional classes of C-8 substituted caffeinyl analogues. The 8-phenyl- and 8-benzylcaffeinyl analogues exhibited relatively weak MAO-B inhibition potencies while selected (E,E)-8-(4-phenylbutadien-1-yl)caffeinyl analogues were found to be exceptionally potent reversible MAO-B inhibitors with enzyme-inhibitor dissociation constants (K(i) values) ranging from 17 to 149 nM. Furthermore, these (E,E)-8-(4-phenylbutadien-1-yl)caffeines acted as potent A(2A) antagonists with K(i) values ranging from 59 to 153 nM. We conclude that the (E,E)-8-(4-phenylbutadien-1-yl)caffeines are a promising candidate class of dual-acting compounds.
Bioorganic & Medicinal Chemistry | 2011
Clarina I. Manley-King; Jacobus J. Bergh; Jacobus P. Petzer
Previous studies have shown that (E)-5-styrylisatin and (E)-6-styrylisatin are reversible inhibitors of human monoamine oxidase (MAO) A and B. Both homologues are reported to exhibit selective binding to the MAO-B isoform with (E)-5-styrylisatin being the most potent inhibitor. To further investigate these structure-activity relationships (SAR), in the present study, additional C5- and C6-substituted isatin analogues were synthesized and evaluated as inhibitors of recombinant human MAO-A and MAO-B. With the exception of 5-phenylisatin, all of the analogues examined were selective MAO-B inhibitors. The C5-substituted isatins exhibited higher binding affinities to MAO-B than the corresponding C6-substituted homologues. The most potent MAO-B inhibitor, 5-(4-phenylbutyl)isatin, exhibited an IC(50) value of 0.66nM, approximately 13-fold more potent than (E)-5-styrylisatin and 18,500-fold more potent than isatin. The most potent MAO-A inhibitor was found to be 5-phenylisatin with an IC(50) value of 562nM. The results document that substitution at C5 with a variety of substituents is a general strategy for enhancing the MAO-B inhibition potency of isatin. Possible binding orientations of selected isatin analogues within the active site cavities of MAO-A and MAO-B are proposed.
Bioorganic & Medicinal Chemistry Letters | 2013
Sarel J. Robinson; Jacobus P. Petzer; Anél Petzer; Jacobus J. Bergh; Anna C.U. Lourens
The validity of the chalcone scaffold for the design of inhibitors of monoamine oxidase has previously been illustrated. In a systematic attempt to investigate the effect of heterocyclic substitution on the monoamine oxidase inhibitory properties of this versatile scaffold, a series of furanochalcones were synthesized. The results demonstrate that these furan substituted phenylpropenones exhibited moderate to good inhibitory activities towards MAO-B, but showed weak or no inhibition of the MAO-A enzyme. The most active compound, 2E-3-(5-chlorofuran-2-yl)-1-(3-chlorophenyl)prop-2-en-1-one, exhibited an IC50 value of 0.174 μM for the inhibition of MAO-B and 28.6 μM for the inhibition of MAO-A. Interestingly, contrary to data previously reported for chalcones, these furan substituted derivatives acted as reversible inhibitors, while kinetic analysis revealed a competitive mode of binding.
Bioorganic & Medicinal Chemistry Letters | 2009
Elizna M. Van der Walt; Erika M. Milczek; Sarel F. Malan; Dale E. Edmondson; Neal Castagnoli; Jacobus J. Bergh; Jacobus P. Petzer
Previous studies have shown that (E)-8-(3-chlorostyryl)caffeine (CSC) is a specific reversible inhibitor of human monoamine oxidase B (MAO-B) and does not bind to human MAO-A. Since the small molecule isatin is a natural reversible inhibitor of both MAO-B and MAO-A, (E)-5-styrylisatin and (E)-6-styrylisatin analogues were synthesized in an attempt to identify inhibitors with enhanced potencies and specificities for MAO-B. The (E)-styrylisatin analogues were found to exhibit higher binding affinities than isatin with the MAO preparations tested. The (E)-5-styrylisatin analogues bound more tightly than the (E)-6 analogue although the latter exhibits the highest MAO-B selectivity. Molecular docking studies with MAO-B indicate that the increased binding affinity exhibited by the (E)-styrylisatin analogues, in comparison to isatin, is best explained by the ability of the styrylisatins to bridge both the entrance cavity and the substrate cavity of the enzyme. Experimental support for this model is shown by the weaker binding of the analogues to the Ile199Ala mutant of human MAO-B. The lower selectivity of the (E)-styrylisatin analogues between MAO-A and MAO-B, in contrast to CSC, is best explained by the differing relative geometries of the aromatic rings for these two classes of inhibitors.
Bioorganic & Medicinal Chemistry | 2011
Clarina I. Manley-King; Jacobus J. Bergh; Jacobus P. Petzer
Literature reports that isatin as well as C5- and C6-substituted isatin analogues are reversible inhibitors of human monoamine oxidase (MAO) A and B. In general, C5- and C6-substitution of isatin leads to enhanced binding affinity to both MAO isozymes compared to isatin and in most instances result in selective binding to the MAO-B isoform. Crystallographic and modeling studies suggest that the isatin ring binds to the substrate cavities of MAO-A and -B and is stabilized by hydrogen bond interactions between the NH and the C2 carbonyl oxygen of the dioxoindolyl moiety and water molecules present in the substrate cavities of MAO-A and -B. Based on these observations and the close structural resemblances between isatin and its phthalimide isomer, a series of phthalimide analogues were synthesized and evaluated as MAO inhibitors. While phthalimide and N-aryl-substituted phthalimides were found to be weak MAO inhibitors, phthalimide homologues containing C5 substituents were potent reversible inhibitors of recombinant human MAO-B with IC(50) values ranging from 0.007 to 2.5 μM and moderately potent reversible inhibitors of recombinant human MAO-A with IC(50) values ranging from 0.22 to 9.0 μM. By employing molecular docking the importance of hydrogen bonding between the active sites of MAO-A and -B and the phthalimide inhibitors are highlighted.
Fuel | 1997
Jacobus J. Bergh; Isak J. Cronjé; Johannes. Dekker; Theodor G. Dekker; L.Marcia Gerritsma; L.Jakobus Mienie
The composition and toxicity of the aqueous oxidation fraction of coal were investigated, to gain information concerning process safety measures and the utilization of the oxidation products as antibacterial agents. Coal was oxidized with oxygen at 180°C under constant pressure (4 MPa). Fractions of the crude filtrate obtained during this process were sublimed, distilled and extracted with ether and ethanol. Almost 50 different acids were identified in these samples using g.c. and g.c.-m.s. analyses. The following groups of acids could be distinguished: (1) all possible unsubstituted acids containing up to four carbon atoms: (2) higher carboxylic acids containing even numbers of carbon atoms, agreeing with occurrence in nature; (3) oxygenated straight-chain or branched acids in the hydroxy or keto form containing up to six carbon atoms; (4) dicarboxylic aliphatic acids containing up to six carbon atoms; and (5) benzoic acid and its monohydroxy derivatives and phthalic acid. No highly toxic compounds could be identified, most of the compounds being common physiological metabolites. Primary acute toxicity studies were carried out on rats, using the crude aqueous solution and the drum-dried product of this solution. Apart from local irritation caused by their acidic nature, neither of these fractions exhibited significant acute toxicity in the test animals.
Bioorganic & Medicinal Chemistry | 2011
Hermanus P. Booysen; Christina Moraal; Gisella Terre'Blanche; Anél Petzer; Jacobus J. Bergh; Jacobus P. Petzer
In a recent study it was shown that 8-benzyloxycaffeine analogues act as potent reversible inhibitors of human monoamine oxidase (MAO) A and B. Although the benzyloxy side chain appears to be particularly favorable for enhancing the MAO inhibition potency of caffeine, a variety of other C8 oxy substituents of caffeine also lead to potent MAO inhibition. In an attempt to discover additional C8 substituents of caffeine that lead to potent MAO inhibition and to explore the importance of the ether oxygen for the MAO inhibition properties of C8 oxy-substituted caffeines, a series of 8-sulfanyl- and 8-aminocaffeine analogues were synthesized and their human MAO-A and -B inhibition potencies were compared to those of the 8-oxycaffeines. The results document that the sulfanylcaffeine analogues are reversible competitive MAO-B inhibitors with potencies comparable to those of the oxycaffeines. The most potent inhibitor, 8-{[(4-bromophenyl)methyl]sulfanyl}caffeine, exhibited an IC(50) value of 0.167 μM towards MAO-B. While the sulfanylcaffeine analogues also exhibit affinities for MAO-A, they display in general a high degree of MAO-B selectivity. The aminocaffeine analogues, in contrast, proved to be weak MAO inhibitors with a number of analogues exhibiting no binding to the MAO-A and -B isozymes. The results of this study are discussed with reference to possible binding orientations of selected caffeine analogues within the active site cavities of MAO-A and -B. MAO-B selective sulfanylcaffeine derived inhibitors may act as lead compounds for the design of antiparkinsonian therapies.
European Journal of Medicinal Chemistry | 2011
Lesetja J. Legoabe; Johann Kruger; Anél Petzer; Jacobus J. Bergh; Jacobus P. Petzer
A series of anilide derivatives were synthesized and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The most potent inhibitors among the derivatives that were initially evaluated were (2E)-N-(3-chlorophenyl)-3-phenylprop-2-enamide (2c) and (2E)-N-(3-bromophenyl)-3-phenylprop-2-enamide (2d) with IC(50) values of 0.53 μM and 0.45 μM, respectively. These derivatives exhibited reversible and selective inhibition of MAO-B with binding affinities 37 fold higher for MAO-B than for MAO-A. Analysis of the possible binding interactions of these inhibitors with active site models of human MAO-A and -B led to the design of phenolic and benzonitrile derivatives of 2c and 2d. Among these were (2E)-N-(3-chlorophenyl)-3-(4-hydroxyphenyl)prop-2-enamide (7c) and (2E)-N-(3-bromophenyl)-3-(4-hydroxyphenyl)prop-2-enamide (7d) which inhibited MAO-B selectively and reversibly with IC(50) values of 0.032 μM and 0.026 μM, respectively. These inhibitors were at least 14 fold more potent than 2c and 2d. This study concludes that N,3-diphenylprop-2-enamide is a suitable scaffold for the design of selective MAO-B inhibitors and structural modifications to enhance the binding affinities of the inhibitors for the MAO-B active site include substitution with halogens on the N-phenyl ring and substitution with hydroxyl and nitrile functional groups on the para and meta positions, respectively, of the C3 phenyl ring. Possible binding modes of these structures within the MAO-B active site are proposed with the emphasis on the interactions of the inhibitor halogens and the hydroxyl and nitrile functional groups with active site residues and water molecules.
Bioorganic & Medicinal Chemistry | 2009
Clarina I. Manley-King; Gisella Terre'Blanche; Neal Castagnoli; Jacobus J. Bergh; Jacobus P. Petzer
Based on a recent report that 1-methyl-3-phenylpyrrolyl analogues are moderately potent reversible inhibitors of the enzyme monoamine oxidase B (MAO-B), a series of structurally related N-methyl-2-phenylmaleimidyl analogues has been prepared and evaluated as inhibitors of MAO-B. In general, the maleimides were more potent competitive inhibitors than the corresponding pyrrolyl analogues. N-Methyl-2-phenylmaleimide was found to be the most potent inhibitor with an enzyme-inhibitor dissociation constant (K(i) value) of 3.49 microM, approximately 30-fold more potent than 1-methyl-3-phenylpyrrole (K(i)=118 microM). This difference in activities may be dependent upon the ability of the maleimidyl heterocyclic system to act as a hydrogen bond acceptor. This is in correspondence with literature reports which suggest that hydrogen bond formation is involved in stabilizing inhibitor-MAO-B complexes. Also reported here is a brief kinetic study of the hydrolysis of the N-methyl-2-phenylmaleimidyl analogues in aqueous solution. The findings of the inhibition studies are discussed with reference to the rate and extent of hydrolysis.