Lodewyk J. Mienie
North-West University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lodewyk J. Mienie.
Metabolomics | 2015
Shayne Mason; A. Marceline van Furth; Lodewyk J. Mienie; Udo Engelke; Ron A. Wevers; Regan Solomons; Carolus J. Reinecke
Tuberculosis meningitis (TBM) is the most severe form of extra-pulmonary tuberculosis and is particularly intense in small children; there is no universally accepted algorithm for the diagnosis and substantiation of TB infection, which can lead to delayed intervention, a high risk factor for morbidity and mortality. In this study a proton magnetic resonance (1H NMR)-based metabolomics analysis and several chemometric methods were applied to data generated from lumber cerebrospinal fluid (CSF) samples from three experimental groups: (1) South African infants and children with confirmed TBM, (2) non-meningitis South African infants and children as controls, and (3) neurological controls from the Netherlands. A total of 16 NMR-derived CSF metabolites were identified, which clearly differentiated between the controls and TBM cases under investigation. The defining metabolites were the combination of perturbed glucose and highly elevated lactate, common to some other neurological disorders. The remaining 14 metabolites of the host’s response to TBM were likewise mainly energy-associated indicators. We subsequently generated a hypothesis expressed as an “astrocyte–microglia lactate shuttle” (AMLS) based on the host’s response, which emerged from the NMR-metabolomics information. Activation of microglia, as implied by the AMLS hypothesis, does not, however, present a uniform process and involves intricate interactions and feedback loops between the microglia, astrocytes and neurons that hamper attempts to construct basic and linear cascades of cause and effect; TBM involves a complex integration of the responses from the various cell types present within the CNS, with microglia and the astrocytes as main players.
Journal of Pineal Research | 2005
Du Toit Loots; Ian Wiid; Page Bj; Lodewyk J. Mienie; Paul D. van Helden
Abstract: The objective was to determine the effect of combined antituberculosis (anti‐TB) drug therapy and an antioxidant, melatonin, on the free radical and organic acid profiles in an experimental rat model. A combined anti‐TB drug, Rifater, consisting of 12.0 mg rifampicin, 0.8 mg isoniazid, and 23.0 mg pyrazinamide and 18.56 μg melatonin/kg body weight per day (corresponding to average physiological human intake) were orally administered to Sprague–Dawley rats. Hydroxyl radical production was monitored by quantifying 2,3‐dihydroxybenzoic acid produced after intraperitonial sodium salicylate injections. Organic acid extractions and gas chromatography‐coupled mass spectrometry analyses were performed on collected urine samples. The results show hydroxyl radicals (P = 0.0019) and organic acids (P‐value range: 0.037 to <0.001), characteristic of a multiple acyl‐CoA dehydrogenase defect (MADD), were elevated with Rifater treatment and these elevations were significantly lowered with melatonin pretreatment (P‐value range: 0.031 to <0.001), probably because of its inherent antioxidant activity. We conclude that hydroxyl radical production and an increased organic acid profile induced by anti‐TB medication indicates inhibition of the electron transport chain. We also conclude that free radicals leading to clinical symptoms associated with an MADD metabolic profile induced by anti‐TB treatment could be alleviated by melatonin intervention.
Biochimica et Biophysica Acta | 2014
Marli Dercksen; Lodewijk IJlst; M. Duran; Lodewyk J. Mienie; A. van Cruchten; F.H. Van der Westhuizen; R. J. A. Wanders
Hyperammonemia is a frequent finding in various organic acidemias. One possible mechanism involves the inhibition of the enzyme N-acetylglutamate synthase (NAGS), by short-chain acyl-CoAs which accumulate due to defective catabolism of amino acids and/or fatty acids in the cell. The aim of this study was to investigate the effect of various acyl-CoAs on the activity of NAGS in conjunction with the formation of glutamate esters. NAGS activity was measured in vitro using a sensitive enzyme assay with ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) product analysis. Propionyl-CoA and butyryl-CoA proved to be the most powerful inhibitors of N-acetylglutamate (NAG) formation. Branched-chain amino acid related CoAs (isovaleryl-CoA, 3-methylcrotonyl-CoA, isobutyryl-CoA) showed less pronounced inhibition of NAGS whereas the dicarboxylic short-chain acyl-CoAs (methylmalonyl-CoA, succinyl-CoA, glutaryl-CoA) had the least inhibitory effect. Subsequent work showed that the most powerful inhibitors also proved to be the best substrates in the formation of N-acylglutamates. Furthermore, we identified N-isovalerylglutamate, N-3-methylcrotonylglutamate and N-isobutyrylglutamate (the latter two in trace amounts), in the urines of patients with different organic acidemias. Collectively, these findings explain one of the contributing factors to secondary hyperammonemia, which lead to the reduced in vivo flux through the urea cycle in organic acidemias and result in the inadequate elimination of ammonia.
Journal of Inherited Metabolic Disease | 2010
Izelle Smuts; Roan Louw; Hanli Du Toit; Brenda Klopper; Lodewyk J. Mienie; Francois H. van der Westhuizen
Mitochondrial disorders are frequently encountered inherited diseases characterized by unexplained multisystem involvement with a chronic, intermittent, or progressive nature. The objective of this paper is to describe the profile of patients with mitochondrial disorders in South Africa. Patients with possible mitochondrial disorders were accessed over 10 years. Analyses for respiratory chain and pyruvate dehydrogenase complex enzymes were performed on muscle. A diagnosis of a mitochondrial disorder was accepted only if an enzyme activity was deficient. Sixty-three patients were diagnosed with a mitochondrial disorder, including 40 African, 20 Caucasian, one mixed ancestry, and two Indian patients. The most important findings were the difference between African patients and other ethnicities: respiratory chain enzyme complexes CI+III or CII+III deficiencies were found in 52.5% of African patients, being of statistical significance (p value = 0.0061). They also presented predominantly with myopathy (p value = 0.0018); the male:female ratio was 1:1.2. Twenty-five (62.5%) African patients presented with varying degrees of a myopathy accompanied by a myopathic face, high palate, and scoliosis. Fourteen of these 25 also had ptosis and/or progressive external ophthalmoplegia. No patients of other ethnicities presented with this specific myopathic phenotype. Caucasian patients (16/20) presented predominantly with central nervous system involvement. Of the South African pediatric neurology patients, Africans are more likely to present with myopathy and CII+III deficiency, and Caucasian patients are more likely to present with encephalopathy or encephalomyopathy.
Lipids in Health and Disease | 2011
Gisella Terre'Blanche; Mietha M. Van der Walt; Jacobus J. Bergh; Lodewyk J. Mienie
This is a case report of adrenomyeloneuropathy (AMN), the adult variant of adrenoleukodystryphy (ALD). The diagnoses in the patient, aged 34, was confirmed via increased serum very long chain fatty acid concentration (VLCFA). Treatment started with the cholesterol lowering drug, atorvastatin, followed by add-on therapy with Lorenzos oil (LO) and finally supplementation with docosahexaenoic acid (DHA). The magnetic resonance imaging (MRI) scan of the AMN patient before DHA treatment, already showed abnormal white matter in the brain. Although the MRI showed no neurological improvement after 6 months of DHA treatment, no selective progression of demyelination was detected in the AMN patient. Contrary to what was expected, LO failed to sustain or normalize the VLCFA levels or improve clinical symptoms. It was however, shown that DHA supplementation in addition to LO, increased DHA levels in both plasma and red blood cells (RBC). Additionally, the study showed evidence that the elongase activity in the elongation of eicosapentaenoic acid (EPA) to docosapentaenoic acid (DPA) might have been significantly compromised, due to the increased DHA levels.
PLOS ONE | 2016
Adrian S.W. Tordiffe; Lodewyk J. Mienie; Bettina Wachter; Sonja K. Heinrich; Fred Reyers
Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity.
PLOS ONE | 2016
Cindy Irwin; Mari van Reenen; Shayne Mason; Lodewyk J. Mienie; Carolus J. Reinecke; Johan A. Westerhuis
Benzoic acid is widely used as a preservative in food products and is detoxified in humans through glycine conjugation. Different viewpoints prevail on the physiological significance of the glycine conjugation reaction and concerns have been raised on potential public health consequences following uncontrolled benzoic acid ingestion. We performed a metabolomics study which used commercial benzoic acid containing flavored water as vehicle for designed interventions, and report here on the controlled consumption of the benzoic acid by 21 cases across 6 time points for a total of 126 time points. Metabolomics data from urinary samples analyzed by nuclear magnetic resonance spectroscopy were generated in a time-dependent cross-over study. We used ANOVA-simultaneous component analysis (ASCA), repeated measures analysis of variance (RM-ANOVA) and unfolded principal component analysis (unfolded PCA) to supplement conventional statistical methods to uncover fully the metabolic perturbations due to the xenobiotic intervention, encapsulated in the metabolomics tensor (three-dimensional matrices having cases, spectral areas and time as axes). Identification of the biologically important metabolites by the novel combination of statistical methods proved the power of this approach for metabolomics studies having complex data structures in general. The study disclosed a high degree of inter-individual variation in detoxification of the xenobiotic and revealed metabolic information, indicating that detoxification of benzoic acid through glycine conjugation to hippuric acid does not indicate glycine depletion, but is supplemented by ample glycine regeneration. The observations lend support to the view of maintenance of glycine homeostasis during detoxification. The study indicates also that time-dependent metabolomics investigations, using designed interventions, provide a way of interpreting the variation induced by the different factors of a designed experiment–an approach with potential to advance significantly our understanding of normal and pathophysiological perturbations of endogenous or exogenous origin.
Biology Open | 2018
Leonie Venter; Du Toit Loots; Lodewyk J. Mienie; Peet Jansen van Rensburg; Shayne Mason; Andre Vosloo; Jeremie Zander Lindeque
ABSTRACT Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone (Haliotis midae) subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids) for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia. This article has an associated First Person interview with the first author of the paper. Summary: We report, for the first time, a metabolic map of abalone metabolism in response to functional hypoxia, compiled from results obtained by metabolomics analysis.
Scientific Reports | 2018
C. Irwin; Lodewyk J. Mienie; Ron A. Wevers; Shayne Mason; Johan A. Westerhuis; M. van Reenen; Carools J. Reinecke
Metabolomics studies of diseases associated with chronic alcohol consumption provide compelling evidence of several perturbed metabolic pathways. Moreover, the holistic approach of such studies gives insights into the pathophysiological risk factors associated with chronic alcohol-induced disability, morbidity and mortality. Here, we report on a GC–MS-based organic acid profiling study on acute alcohol consumption. Our investigation — involving 12 healthy, moderate-drinking young men — simulated a single binge drinking event, and indicated its metabolic consequences. We generated time-dependent data that predicted the metabolic pathophysiology of the alcohol intervention. Multivariate statistical modelling was applied to the longitudinal data of 120 biologically relevant organic acids, of which 13 provided statistical evidence of the alcohol effect. The known alcohol-induced increased NADH:NAD+ ratio in the cytosol of hepatocytes contributed to the global dysregulation of several metabolic reactions of glycolysis, ketogenesis, the Krebs cycle and gluconeogenesis. The significant presence of 2-hydroxyisobutyric acid supports the emerging paradigm that this compound is an important endogenous metabolite. Its metabolic origin remains elusive, but recent evidence indicated 2-hydroxyisobutyrylation as a novel regulatory modifier of histones. Metabolomics has thus opened an avenue for further research on the reprogramming of metabolic pathways and epigenetic networks in relation to the severe effects of alcohol consumption.
PLOS ONE | 2018
C. Irwin; M. van Reenen; Shayne Mason; Lodewyk J. Mienie; Ron A. Wevers; Johan A. Westerhuis; Carools J. Reinecke
Metabolomics studies of disease conditions related to chronic alcohol consumption provide compelling evidence of several perturbed metabolic pathways underlying the pathophysiology of alcoholism. The objective of the present study was to utilize proton nuclear magnetic resonance (1H-NMR) spectroscopy metabolomics to study the holistic metabolic consequences of acute alcohol consumption in humans. The experimental design was a cross-over intervention study which included a number of substances to be consumed—alcohol, a nicotinamide adenine dinucleotide (NAD) supplement, and a benzoic acid-containing flavoured water vehicle. The experimental subjects—24 healthy, moderate-drinking young men—each provided six hourly-collected urine samples for analysis. Complete data sets were obtained from 20 of the subjects and used for data generation, analysis and interpretation. The results from the NMR approach produced complex spectral data, which could be resolved sufficiently through the application of a combination of univariate and multivariate methods of statistical analysis. The metabolite profiles resulting from acute alcohol consumption indicated that alcohol-induced NAD+ depletion, and the production of an excessive amount of reducing equivalents, greatly perturbed the hepatocyte redox homeostasis, resulting in essentially three major metabolic disturbances—up-regulated lactic acid metabolism, down-regulated purine catabolism and osmoregulation. Of these, the urinary excretion of the osmolyte sorbitol proved to be novel, and suggests hepatocyte swelling due to ethanol influx following acute alcohol consumption. Time-dependent metabolomics investigations, using designed interventions, provide a way of interpreting the variation induced by the different factors of a designed experiment, thereby also giving methodological significance to this study. The outcomes of this approach have the potential to significantly advance our understanding of the serious impact of the pathophysiological perturbations which arise from the consumption of a single, large dose of alcohol—a simulation of a widespread, and mostly naive, social practice.