Jacqueline A. Thompson
James Hutton Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jacqueline A. Thompson.
Annals of Botany | 2012
Lawrie K. Brown; Timothy S. George; Jacqueline A. Thompson; Gladys Wright; J. Lyon; Lionel X. Dupuy; S.F. Hubbard; Philip J. White
BACKGROUND AND AIMSnPhosphorus commonly limits crop yield and is frequently applied as fertilizer; however, supplies of quality rock phosphate for fertilizer production are diminishing. Plants have evolved many mechanisms to increase their P-fertilizer use efficiency, and an understanding of these traits could result in improved long-term sustainability of agriculture. Here a mutant population is utilized to assess the impact of root hair length on P acquisition and yield under P-deficient conditions alone or when combined with drought.nnnMETHODSnMutants with various root hair phenotypes were grown in the glasshouse in pots filled with soil representing sufficient and deficient P treatments and, in one experiment, a range of water availability was also imposed. Plants were variously harvested at 7 d, 8 weeks and 14 weeks, and variables including root hair length, rhizosheath weight, biomass, P accumulation and yield were measured.nnnKEY RESULTSnThe results confirmed the robustness of the root hair phenotypes in soils and their relationship to rhizosheath production. The data demonstrated that root hair length is important for shoot P accumulation and biomass, while only the presence of root hairs is critical for yield. Root hair presence was also critical for tolerance to extreme combined P deficit and drought stress, with genotypes with no root hairs suffering extreme growth retardation in comparison with those with root hairs.nnnCONCLUSIONSnThe results suggest that although root hair length is not important for maintaining yield, the presence of root hairs is implicit to sustainable yield of barley under P-deficient conditions and when combined with extreme drought. Root hairs are a trait that should be maintained in future germplasm.
New Phytologist | 2012
Philip J. White; Martin R. Broadley; Jacqueline A. Thompson; James W. McNicol; Mick Crawley; P. R. Poulton; A. E. Johnston
• The ionome is the elemental composition of a tissue or organism. Phylogenetic variation in the ionomes of plant shoots has been widely reported based on controlled experiments, vegetation surveys and literature meta-analyses. However, environmental effects on phylogenetic variation in shoot ionomes have not been quantified. This study tests the hypothesis that phylogenetic variation in shoot ionomes is robust to environmental perturbation and that plant families can be distinguished by their shoot ionomes. • Herbage was sampled from six subplots of the Rothamsted Park Grass Experiment. Subplots had received contrasting fertilizer treatments since 1856. Herbage was separated into its constituent species (n = 21) and concentrations of eleven mineral elements were determined in dried shoot material. • Shoot concentrations of calcium (Ca), zinc (Zn), manganese (Mn), magnesium (Mg) and sodium (Na) showed significant variation associated with plant species, and responded similarly to fertilizer treatments in diverse plant species. Species × treatment interactions were indicated for phosphorus (P), potassium (K), nickel (Ni), copper (Cu) and iron (Fe). Plant families could be distinguished by their shoot ionomes. The most informative elements for discriminant analysis were Ca > Mg > Ni > S > Na > Zn > K > Cu > Fe > Mn > P. • Whilst shoot ionomes were sensitive to fertilizer treatment, phylogenetic variation in a subset of the shoot ionome (Ca, Zn, Mn, Mg) was robust to this environmental perturbation.
Journal of Animal Ecology | 2013
Scott N. Johnson; Carolyn Mitchell; James W. McNicol; Jacqueline A. Thompson; Alison J. Karley
1. Terrestrial food webs are woven from complex interactions, often underpinned by plant-mediated interactions between herbivores and higher trophic groups. Below- and above-ground herbivores can influence one another via induced changes to a shared host plant, potentially shaping the wider community. However, empirical evidence linking laboratory observations to natural field populations has so far been elusive. 2. This study investigated how root-feeding weevils (Otiorhynchus sulcatus) influence different feeding guilds of herbivore (phloem-feeding aphids, Cryptomyzus galeopsidis, and leaf-chewing sawflies, Nematus olfaciens) in both controlled and field conditions. 3. We hypothesized that root herbivore-induced changes in plant nutrients (C, N, P and amino acids) and defensive compounds (phenolics) would underpin the interactions between root and foliar herbivores, and ultimately populations of natural enemies of the foliar herbivores in the field. 4. Weevils increased field populations of aphids by ca. 700%, which was followed by an increase in the abundance of aphid natural enemies. Weevils increased the proportion of foliar essential amino acids, and this change was positively correlated with aphid abundance, which increased by 90% on plants with weevils in controlled experiments. 5. In contrast, sawfly populations were 77% smaller during mid-June and adult emergence delayed by >14 days on plants with weevils. In controlled experiments, weevils impaired sawfly growth by 18%, which correlated with 35% reductions in leaf phosphorus caused by root herbivory, a previously unreported mechanism for above-ground-below-ground herbivore interactions. 6. This represents a clear demonstration of root herbivores affecting foliar herbivore community composition and natural enemy abundance in the field via two distinct plant-mediated nutritional mechanisms. Aphid populations, in particular, were initially driven by bottom-up effects (i.e. plant-mediated effects of root herbivory), but consequent increases in natural enemies triggered top-down regulation.
Journal of Horticultural Science & Biotechnology | 2012
Philip J. White; Martin R. Broadley; John P. Hammond; Gavin Ramsay; Nithya K. Subramanian; Jacqueline A. Thompson; Gladys Wright
Summary Worldwide, many people are zinc (Zn)-deficient. Dietary Zn intake can be increased by producing crops with higher concentrations of Zn in their edible portions. This can be achieved by applying Zn-fertilisers to varieties with an increased ability to acquire Zn and to accumulate Zn in their edible portions. Potato (Solanum tuberosum L.) is an important food crop and is, therefore, a target for bio-fortification with Zn. Field trials incorporating a core collection of 23 potato genotypes, performed over 4 years (2006 – 2009), indicated significant genotypic effects on tuber Zn concentration and suggested that tuber Zn concentration was influenced by environmental effects, but also found that genotype × environment (G × E) interactions were not significant. Tuber Zn concentrations averaged 10.8 mg kg–1 dry matter (DM), and the ratio between the lowest and the highest varietal tuber Zn-concentration averaged 1.76. Tuber Zn concentrations could be increased by foliar Zn-fertilisation. Tuber yields of ‘Maris Piper’ were unaffected by foliar applications of < 1.08 g Zn plant–1. The relationship between tuber Zn concentration and foliar Zn application followed a saturation curve, reaching a maximum at approx. 30 mg Zn kg–1 DM at a foliar Zn application rate of 1.08 g plant–1. Despite a 40-fold increase in shoot Zn concentration compared to the unfertilised controls following foliar Zn-fertilisation with 2.16 g Zn plant–1, only a doubling in tuber Zn concentration was observed. This suggests that the bio-fortification of tubers with Zn was restricted by the limited mobility of Zn in the phloem. A significant positive linear relationship between tuber Zn concentration and tuber N concentration supported the hypothesis of co-transport of Zn and N-compounds in the phloem.
Plant and Soil | 2017
Philip J. White; Jacqueline A. Thompson; Gladys Wright; Søren K. Rasmussen
Background and aimsThe diets of many people lack sufficient zinc (Zn). This article investigates the production of potato (Solanum tuberosum L.) crops with greater tuber Zn concentrations to increase dietary Zn intakes.MethodsField experiments were undertaken to increase Zn concentrations in potato tubers using foliar Zn fertilisers.ResultsFoliar Zn fertilisers increased tuber Zn concentrations but excessive applications reduced tuber yield in all four potato genotypes studied. Zinc oxide and zinc sulphate were more effective than zinc nitrate as foliar fertilisers for increasing tuber Zn concentrations whilst maintaining yields. Foliar Zn-fertilisers increased Zn concentrations in both flesh and skin of tubers. Although Zn-biofortification had no effect on the concentrations of iron, manganese, copper, calcium, magnesium or potassium in tubers, it increased tuber phytate concentrations. Cooking reduced Zn concentrations in Zn-biofortified tubers and this effect was exacerbated by peeling. After cooking, the quotient of Zn concentrations in Zn-biofortified/non-biofortified tubers ranged from 2.36 to 3.58. Applying foliar Zn fertilisers to a preceding potato crop increased Zn concentrations in grain of a following barley crop significantly in only one out of 3xa0years.ConclusionFoliar Zn fertilisers can increase Zn concentrations in potato tubers and, potentially, dietary Zn intakes.
Crop & Pasture Science | 2015
Philip J. White; Helen C. Bowen; Emily Farley; Emma K. Shaw; Jacqueline A. Thompson; Gladys Wright; Martin R. Broadley
Abstract. n Insufficient calcium (Ca) or magnesium (Mg) in the diets of humans and animals has negative effects on health. Knowledge of the concentrations of Ca and Mg in edible crops can help inform the formulation of appropriate diets. There are large differences in shoot concentrations of both Ca ([Ca]shoot) and Mg ([Mg]shoot) between angiosperm orders. For example, relative to other angiosperms, commelinid monocot species generally have lower [Ca]shoot and [Mg]shoot; species from the Cucurbitales, Malvales and Brassicales generally have higher [Ca]shoot and [Mg]shoot; and species from the Oxalidales and Caryophyllales generally have higher [Mg]shoot but similar [Ca]shoot, which results in higher [Mg]shoot/[Ca]shoot quotients. In this paper the evolution of the combined traits of high [Mg]shoot and high [Mg]shoot/[Ca]shoot quotient in the Caryophyllales was resolved at the family level. All Caryophyllales families had high mean [Mg]shoot and [Mg]shoot/[Ca]shoot quotients, suggesting that both of these traits evolved in an ancient ancestor of all Caryophyllales families.
New Phytologist | 2017
Philip J. White; Helen C. Bowen; Martin R. Broadley; Hamed A. El-Serehy; Konrad Neugebauer; Anna Taylor; Jacqueline A. Thompson; Gladys Wright
Summary The prevalence of sodium (Na)‐‘hyperaccumulator’ species, which exhibit abnormally large shoot sodium concentrations ([Na]shoot) when grown in nonsaline environments, was investigated among angiosperms in general and within the Caryophyllales order in particular. Shoot Na concentrations were determined in 334 angiosperm species, representing 35 orders, grown hydroponically in a nonsaline solution. Many Caryophyllales species exhibited abnormally large [Na]shoot when grown hydroponically in a nonsaline solution. The bimodal distribution of the log‐normal [Na]shoot of species within the Caryophyllales suggested at least two distinct [Na]shoot phenotypes within this order. Mapping the trait of Na‐hyperaccumulation onto the phylogenetic relationships between Caryophyllales families, and between subfamilies within the Amaranthaceae, suggested that the trait evolved several times within this order: in an ancestor of the Aizoaceae, but not the Phytolaccaceae or Nyctaginaceae, in ancestors of several lineages formerly classified as Chenopodiaceae, but not in the Amaranthaceae sensu stricto, and in ancestors of species within the Cactaceae, Portulacaceae, Plumbaginaceae, Tamaricaceae and Polygonaceae. In conclusion, a disproportionate number of Caryophyllales species behave as Na‐hyperaccumulators, and multiple evolutionary origins of this trait can be identified within this order.
PLOS ONE | 2017
Nasya B. Tomlekova; Philip J. White; Jacqueline A. Thompson; Emil A. Penchev; Stephan Nielen
Vitamin and mineral deficiencies are prevalent in human populations throughout the world. Vitamin A deficiency affects hundreds of millions of pre-school age children in low income countries. Fruits of pepper (Capsicum annuum L.) can be a major dietary source of precursors to Vitamin A biosynthesis, such as β-carotene. Recently, pepper breeding programs have introduced the orange-fruited (of) trait of the mutant variety Oranzheva kapiya, which is associated with high fruit β-carotene concentrations, to the mutant variety Albena. In this manuscript, concentrations of β-carotene and mineral elements (magnesium, phosphorus, sulphur, potassium, zinc, calcium, manganese, iron and copper) were compared in fruit from P31, a red-fruited genotype derived from the variety Albena, and M38, a genotype developed by transferring the orange-fruited mutation (of) into Albena. It was observed that fruit from M38 plants had greater β-carotene concentration at both commercial and botanical maturity (4.9 and 52.7 mg / kg fresh weight, respectively) than fruit from P31 plants (2.3 and 30.1 mg / kg fresh weight, respectively). The mutation producing high β-carotene concentrations in pepper fruits had no detrimental effect on the concentrations of mineral elements required for human nutrition.
Plant Methods | 2017
Lionel X. Dupuy; Gladys Wright; Jacqueline A. Thompson; Anna Taylor; Sebastien Dekeyser; Christopher P. White; W. T. B. Thomas; Mark Nightingale; John P. Hammond; Neil S. Graham; Martin R. Broadley; Philip J. White
BackgroundThere are numerous systems and techniques to measure the growth of plant roots. However, phenotyping large numbers of plant roots for breeding and genetic analyses remains challenging. One major difficulty is to achieve high throughput and resolution at a reasonable cost per plant sample. Here we describe a cost-effective root phenotyping pipeline, on which we perform time and accuracy benchmarking to identify bottlenecks in such pipelines and strategies for their acceleration.ResultsOur root phenotyping pipeline was assembled with custom software and low cost material and equipment. Results show that sample preparation and handling of samples during screening are the most time consuming task in root phenotyping. Algorithms can be used to speed up the extraction of root traits from image data, but when applied to large numbers of images, there is a trade-off between time of processing the data and errors contained in the database.ConclusionsScaling-up root phenotyping to large numbers of genotypes will require not only automation of sample preparation and sample handling, but also efficient algorithms for error detection for more reliable replacement of manual interventions.
Plant and Soil | 2018
Paula Pongrac; James W. McNicol; Allan Lilly; Jacqueline A. Thompson; Gladys Wright; Stephen Hillier; Philip J. White
Background and aimsThe effects of phosphorus and zinc applications on phosphorus and zinc concentrations in plants grown in different soil types have rarely been investigated. The aim of this study was to evaluate the effects of different soil types and phosphorus and zinc addition on growth and mineral element composition of red cabbage (Brassica oleracea var. capitata L. cv. Red Drumhead).MethodsPlants were grown for six weeks in three different soils (a freely drained Cambisol, an imperfectly drained Cambisol, and a Stagnosol) in a glasshouse. Each soil was amended with one of 25 combinations of phosphorus and zinc fertiliser. Soil characteristics, growth, and mineral element concentrations in shoots were assessed.ResultsSoil type significantly affected shoot growth and concentrations of phosphorus, zinc, potassium, calcium, magnesium and manganese, but not iron concentration of red cabbage. Across soils, the observed responses were attributed to soil phosphorus, potassium, calcium, magnesium, and sulphur concentrations, organic matter content, and mineral composition, mainly kaolinite and plagioclase.ConclusionsSoil type effects on mineral element composition of red cabbage could have important implications for increasing mineral element concentration in crops to alleviate mineral element deficiencies in human diets.