Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline L. Beaudry is active.

Publication


Featured researches published by Jacqueline L. Beaudry.


The New England Journal of Medicine | 2015

FTO Obesity Variant Circuitry and Adipocyte Browning in Humans

Melina Claussnitzer; Simon N. Dankel; Kyoung-Han Kim; Gerald Quon; Wouter Meuleman; Christine Haugen; Viktoria Glunk; Isabel S. Sousa; Jacqueline L. Beaudry; Vijitha Puviindran; Nezar A. Abdennur; Jannel Liu; Per-Arne Svensson; Yi-Hsiang Hsu; Daniel J. Drucker; Gunnar Mellgren; Chi-chung Hui; Hans Hauner; Manolis Kellis

BACKGROUND Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive. METHODS We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR-Cas9 genome editing in samples from patients. RESULTS Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR-Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7. CONCLUSIONS Our results point to a pathway for adipocyte thermogenesis regulation involving ARID5B, rs1421085, IRX3, and IRX5, which, when manipulated, had pronounced pro-obesity and anti-obesity effects. (Funded by the German Research Center for Environmental Health and others.).


Disease Models & Mechanisms | 2012

A rodent model of rapid-onset diabetes induced by glucocorticoids and high-fat feeding

Yaniv Shpilberg; Jacqueline L. Beaudry; Anna D’Souza; Jonathan E. Campbell; Ashley J. Peckett; Michael C. Riddell

SUMMARY Glucocorticoids (GCs) are potent pharmacological agents used to treat a number of immune conditions. GCs are also naturally occurring steroid hormones (e.g. cortisol, corticosterone) produced in response to stressful conditions that are thought to increase the preference for calorie dense ‘comfort’ foods. If chronically elevated, GCs can contribute to the development of type 2 diabetes mellitus (T2DM), although the mechanisms for the diabetogenic effects are not entirely clear. The present study proposes a new rodent model to investigate the combined metabolic effects of elevated GCs and high-fat feeding on ectopic fat deposition and diabetes development. Male Sprague-Dawley rats (aged 7–8 weeks) received exogenous corticosterone or wax (placebo) pellets, implanted subcutaneously, and were fed either a standard chow diet (SD) or a 60% high-fat diet (HFD) for 16 days. Animals given corticosterone and a HFD (cort-HFD) had lower body weight and smaller relative glycolytic muscle mass, but increased relative epididymal mass, compared with controls (placebo-SD). Cort-HFD rats exhibited severe hepatic steatosis and increased muscle lipid deposition compared with placebo-SD animals. Moreover, cort-HFD animals were found to exhibit severe fasting hyperglycemia (60% increase), hyperinsulinemia (80% increase), insulin resistance (60% increase) and impaired β-cell response to oral glucose load (20% decrease) compared with placebo-SD animals. Thus, a metabolic syndrome or T2DM phenotype can be rapidly induced in young Sprague-Dawley rats by using exogenous GCs if a HFD is consumed. This finding might be valuable in examining the physiological and molecular mechanisms of GC-induced metabolic disease.


PLOS ONE | 2012

Inhibition of Proliferation, Migration and Proteolysis Contribute to Corticosterone-Mediated Inhibition of Angiogenesis

Eric A. Shikatani; Anastassia Trifonova; Erin R. Mandel; Sammy T. K. Liu; Emilie Roudier; Anna Krylova; Andrei Szigiato; Jacqueline L. Beaudry; Michael C. Riddell; Tara L. Haas

The angiostatic nature of pharmacological doses of glucocorticoid steroids is well known. However, the consequences of pathophysiological elevation of endogenous glucocorticoids are not well established. In the current study, we hypothesized that the angiostatic effect of corticosterone, an endogenous glucocorticoid in rodents, occurs through multi-faceted alterations in skeletal muscle microvascular endothelial cell proliferation, migration, and proteolysis. Chronic corticosterone treatment significantly reduced the capillary to fiber ratio in the tibialis anterior muscle compared to that of placebo-treated rats. Corticosterone inhibited endothelial cell sprouting from capillary segments ex vivo. Similarly, 3-dimensional endothelial cell spheroids treated with corticosterone for 48 hours showed evidence of sprout regression and reduced sprout length. Endothelial cell proliferation was reduced in corticosterone treated cells, coinciding with elevated FoxO1 and reduced VEGF production. Corticosterone treated endothelial cells exhibited reduced migration, which correlated with a reduction in RhoA activity. Furthermore, corticosterone treated endothelial cells in both 3-dimensional and monolayer cultures had decreased MMP-2 production and activation resulting in decreased proteolysis by endothelial cells, limiting their angiogenic potential. Promoter assays revealed that corticosterone treatment transcriptionally repressed MMP-2, which may map to a predicted GRE between −1510 and −1386 bp of the MMP-2 promoter. Additionally, Sp1, a known transcriptional activator of MMP-2 was decreased following corticosterone treatment. This study provides new insights into the mechanisms by which pathophysiological levels of endogenous glucocorticoids may exert angiostatic effects.


PLOS ONE | 2014

Effects of Selective and Non-Selective Glucocorticoid Receptor II Antagonists on Rapid-Onset Diabetes in Young Rats

Jacqueline L. Beaudry; Emily C. Dunford; Trevor Teich; Dessi P. Zaharieva; Hazel Hunt; Joseph K. Belanoff; Michael C. Riddell

The blockade of glucocorticoid (GC) action through antagonism of the glucocorticoid receptor II (GRII) has been used to minimize the undesirable effects of chronically elevated GC levels. Mifepristone (RU486) is known to competitively block GRII action, but not exclusively, as it antagonizes the progesterone receptor. A number of new selective GRII antagonists have been developed, but limited testing has been completed in animal models of overt type 2 diabetes mellitus. Therefore, two selective GRII antagonists (C113176 and C108297) were tested to determine their effects in our model of GC-induced rapid-onset diabetes (ROD). Male Sprague-Dawley rats (∼ six weeks of age) were placed on a high-fat diet (60%), surgically implanted with pellets containing corticosterone (CORT) or wax (control) and divided into five treatment groups. Each group was treated with either a GRII antagonist or vehicle for 14 days after surgery: CORT pellets (400 mg/rat) + antagonists (80 mg/kg/day); CORT pellets + drug vehicle; and wax pellets (control) + drug vehicle. After 10 days of CORT treatment, body mass gain was increased with RU486 (by ∼20% from baseline) and maintained with C113176 administration, whereas rats given C108297 had similar body mass loss (∼15%) to ROD animals. Fasting glycemia was elevated in the ROD animals (>20 mM), normalized completely in animals treated with RU486 (6.2±0.1 mM, p<0.05) and improved in animals treated with C108297 and C113176 (14.0±1.6 and 8.8±1.6 mM, p<0.05 respectively). Glucose intolerance was normalized with RU486 treatment, whereas acute insulin response was improved with RU486 and C113176 treatment. Also, peripheral insulin resistance was attenuated with C113176 treatment along with improved levels of β-cell function while C108297 antagonism only provided modest improvements. In summary, C113176 is an effective agent that minimized some GC-induced detrimental metabolic effects and may provide an alternative to the effective, but non-selective, GRII antagonist RU486.


Journal of Applied Physiology | 2015

Voluntary exercise improves metabolic profile in high-fat fed glucocorticoid-treated rats

Jacqueline L. Beaudry; Emily C. Dunford; Erwan Leclair; Erin R. Mandel; Ashley J. Peckett; Tara L. Haas; Michael C. Riddell

Diabetes is rapidly induced in young male Sprague-Dawley rats following treatment with exogenous corticosterone (CORT) and a high-fat diet (HFD). Regular exercise alleviates insulin insensitivity and improves pancreatic β-cell function in insulin-resistant/diabetic rodents, but its effect in an animal model of elevated glucocorticoids is unknown. We examined the effect of voluntary exercise (EX) on diabetes development in CORT-HFD-treated male Sprague-Dawley rats (∼6 wk old). Animals were acclimatized to running wheels for 2 wk, then given a HFD, either wax (placebo) or CORT pellets, and split into 4 groups: placebo-sedentary (SED) or -EX and CORT-SED or -EX. After 2 wk of running combined with treatment, CORT-EX animals had reduced visceral adiposity, and increased skeletal muscle type IIb/x fiber area, oxidative capacity, capillary-to-fiber ratio and insulin sensitivity compared with CORT-SED animals (all P < 0.05). Although CORT-EX animals still had fasting hyperglycemia, these values were significantly improved compared with CORT-SED animals (14.3 ± 1.6 vs. 18.8 ± 0.9 mM). In addition, acute in vivo insulin response to an oral glucose challenge was enhanced ∼2-fold in CORT-EX vs. CORT-SED (P < 0.05) which was further demonstrated ex vivo in isolated islets. We conclude that voluntary wheel running in rats improves, but does not fully normalize, the metabolic profile and skeletal muscle composition of animals administered CORT and HFD.


Diabetes | 2017

β-Cell Inactivation of Gpr119 Unmasks Incretin Dependence of GPR119-Mediated Glucoregulation

Brandon L. Panaro; Grace B. Flock; Jonathan E. Campbell; Jacqueline L. Beaudry; Xiemin Cao; Daniel J. Drucker

GPR119 was originally identified as an orphan β-cell receptor; however, subsequent studies demonstrated that GPR119 also regulates β-cell function indirectly through incretin hormone secretion. We assessed the importance of GPR119 for β-cell function in Gpr119−/− mice and in newly generated Gpr119βcell−/− mice. Gpr119−/− mice displayed normal body weight and glucose tolerance on a regular chow (RC) diet. After high-fat feeding, Gpr119−/− mice exhibited reduced fat mass, decreased levels of circulating adipokines, improved insulin sensitivity, and better glucose tolerance. Unexpectedly, oral and intraperitoneal glucose tolerance and the insulin response to glycemic challenge were not perturbed in Gpr119βcell−/− mice on RC and high-fat diets. Moreover, islets from Gpr119−/− and Gpr119βcell−/− mice exhibited normal insulin responses to glucose and β-cell secretagogues. Furthermore, the selective GPR119 agonist AR231453 failed to directly enhance insulin secretion from perifused islets. In contrast, AR231453 increased plasma glucagon-like peptide 1 (GLP-1) and insulin levels and improved glucose tolerance in wild-type and Gpr119βcell−/− mice. These findings demonstrate that β-cell GPR119 expression is dispensable for the physiological control of insulin secretion and the pharmacological response to GPR119 agonism, findings that may inform the lack of robust efficacy in clinical programs assessing GPR119 agonists for the therapy of type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2016

Glucocorticoid Antagonism Limits Adiposity Rebound and Glucose Intolerance in Young Male Rats Following the Cessation of Daily Exercise and Caloric Restriction

Trevor Teich; Emily C. Dunford; Deanna P. Porras; Jacklyn A. Pivovarov; Jacqueline L. Beaudry; Hazel Hunt; Joseph K. Belanoff; Michael C. Riddell

Severe caloric restriction (CR), in a setting of regular physical exercise, may be a stress that sets the stage for adiposity rebound and insulin resistance when the food restriction and exercise stop. In this study, we examined the effect of mifepristone, a glucocorticoid (GC) receptor antagonist, on limiting adipose tissue mass gain and preserving whole body insulin sensitivity following the cessation of daily running and CR. We calorically restricted male Sprague-Dawley rats and provided access to voluntary running wheels for 3 wk followed by locking of the wheels and reintroduction to ad libitum feeding with or without mifepristone (80 mg·kg(-1)·day(-1)) for 1 wk. Cessation of daily running and CR increased HOMA-IR and visceral adipose mass as well as glucose and insulin area under the curve during an oral glucose tolerance test vs. pre-wheel lock exercised rats and sedentary rats (all P < 0.05). Insulin sensitivity and glucose tolerance were preserved and adipose tissue mass gain was attenuated by daily mifepristone treatment during the post-wheel lock period. These findings suggest that following regular exercise and CR there are GC-induced mechanisms that promote adipose tissue mass gain and impaired metabolic control in healthy organisms and that this phenomenon can be inhibited by the GC receptor antagonist mifepristone.


Diabetes-metabolism Research and Reviews | 2014

Response to ‘Letter to the Editor’ by Dr Rafacho

Jacqueline L. Beaudry; Michael C. Riddell

*Correspondence to: Michael C. Riddell, Kinesiology and Health Science, York University, Toronto, Ontario, Canada. E-mail: [email protected] In reference to the submitted letter entitled ‘Effects of glucocorticoids and exercise on pancreatic β-cell function and diabetes development: comment on Beaudry and Riddell’, we the authors of the original review paper [1] would like to acknowledge the following errors raised by Dr Rafacho:


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Consumption of a high-fat diet rapidly exacerbates the development of fatty liver disease that occurs with chronically elevated glucocorticoids

Anna M. D'souza; Jacqueline L. Beaudry; Andrei Szigiato; Stephen J. Trumble; Laelie A. Snook; Arend Bonen; Adria Giacca; Michael C. Riddell


The FASEB Journal | 2014

The cessation of regular exercise and dieting causes rapid adiposity rebound and glucose intolerance in young male rats, findings that are abolished by the glucocorticoid receptor antagonist Mifepristone (LB759)

Trevor Teich; Jacklyn A. Pivovarov; Jacqueline L. Beaudry; Hazel Hunt; Joseph K. Belanoff; Michael C. Riddell

Collaboration


Dive into the Jacqueline L. Beaudry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge