Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline M. Tarrant is active.

Publication


Featured researches published by Jacqueline M. Tarrant.


Science Translational Medicine | 2015

Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy

Joel D. Leverson; Darren C. Phillips; Michael J. Mitten; Erwin R. Boghaert; Stephen K. Tahir; Lisa D. Belmont; Paul Nimmer; Yu Xiao; Xiaoju Max Ma; Kym N. Lowes; Peter Kovar; Jun Chen; Sha Jin; Morey L. Smith; John Xue; Haichao Zhang; Anatol Oleksijew; Terrance J. Magoc; Kedar S. Vaidya; Daniel H. Albert; Jacqueline M. Tarrant; Nghi La; Le Wang; Zhi-Fu Tao; Michael D. Wendt; Deepak Sampath; Saul H. Rosenberg; Chris Tse; David C. S. Huang; Wayne J. Fairbrother

Selective inhibition of BCL-XL synergizes with docetaxel to inhibit the growth of solid tumors but does not inhibit granulopoiesis. A more refined antitumor strategy The BCL-2 family is a group of related proteins that regulate apoptosis in a variety of ways. The success of anticancer treatments often hinges on the ability to induce cancer cell death by apoptosis. As a result, there has been a great deal of interest in developing drugs that can inhibit the antiapoptotic members of the BCL-2 pathway. Unfortunately, some of these drugs are also associated with dose-limiting hematologic toxicities, such as neutropenia. Now, Leverson et al. have used a toolkit of BCL-2 family inhibitors with different specificities to show that specifically inhibiting BCL-XL (one member of this protein family) is effective for killing tumors, but without the common side effects seen with less selective drugs. The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2–selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL–selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL–selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics.


Science Translational Medicine | 2013

Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier.

Jessica Couch; Y. Joy Yu; Yin Zhang; Jacqueline M. Tarrant; Reina N. Fuji; William J. Meilandt; Hilda Solanoy; Raymond K. Tong; Kwame Hoyte; Wilman Luk; Yanmei Lu; Kapil Gadkar; Saileta Prabhu; Benjamin A. Ordonia; Quyen Nguyen; Yuwen Lin; Zhonghua Lin; Mercedesz Balazs; Kimberly Scearce-Levie; James A. Ernst; Mark S. Dennis; Ryan J. Watts

The safety of therapeutic bispecific antibodies that use TfR for delivery to the brain can be improved by reducing affinity for TfR and eliminating antibody effector function. Averting Roadblocks En Route to the Brain The blood-brain barrier represents a formidable blockade preventing therapeutic antibody delivery into the brain. Bispecific antibodies using the transferrin receptor (TfR) have shown promise for boosting therapeutic antibody uptake into the brain. Although TfR can act as a molecular lift to promote brain uptake, little is known about the safety ramifications of this approach. Building on a pair of studies published in Science Translational Medicine, Couch and colleagues now report that when mice were dosed with therapeutic TfR antibodies, the animals showed acute clinical reactions and a reduction in immature red blood cells, known as reticulocytes. TfR bispecific antibodies engineered to lack Fc interactions with immune cells eliminated adverse acute clinical reactions and reduced reticulocyte loss; the extent of reticulocyte loss was also influenced by binding to TfR and interaction with the complement cascade. Because reticulocytes express high levels of TfR, other cell types that express high levels of TfR were also investigated. The authors observed, for example, that the blood-brain barrier remained completely intact after TfR antibodies were administered to mice, despite the high expression of TfR in brain endothelial cells. Finally, multiple doses of TfR/BACE1 bispecific antibodies reduced amyloid-β, a toxic protein implicated in Alzheimer’s disease, with minimal sustained toxicity. Investigation of monkey and human TfR levels in circulating reticulocytes suggested that loss of these cells may be less likely to occur in primates than in mice. The translational implications of these discoveries suggest that the blood-brain barrier is not the only obstacle to surmount on the way to the brain, at least when using TfR as a molecular lift. Bispecific antibodies using the transferrin receptor (TfR) have shown promise for boosting antibody uptake in brain. Nevertheless, there are limited data on the therapeutic properties including safety liabilities that will enable successful development of TfR-based therapeutics. We evaluate TfR/BACE1 bispecific antibody variants in mouse and show that reducing TfR binding affinity improves not only brain uptake but also peripheral exposure and the safety profile of these antibodies. We identify and seek to address liabilities of targeting TfR with antibodies, namely, acute clinical signs and decreased circulating reticulocytes observed after dosing. By eliminating Fc effector function, we ameliorated the acute clinical signs and partially rescued a reduction in reticulocytes. Furthermore, we show that complement mediates a residual decrease in reticulocytes observed after Fc effector function is eliminated. These data raise important safety concerns and potential mitigation strategies for the development of TfR-based therapies that are designed to cross the blood-brain barrier.


Toxicological Sciences | 2010

Blood Cytokines as Biomarkers of In Vivo Toxicity in Preclinical Safety Assessment: Considerations for Their Use

Jacqueline M. Tarrant

In the drive to develop drugs with well-characterized and clinically monitorable safety profiles, there is incentive to expand the repertoire of safety biomarkers for toxicities without routine markers or premonitory detection. Biomarkers in blood are pursued because of specimen accessibility, opportunity for serial monitoring, quantitative measurement, and the availability of assay platforms. Cytokines, chemokines, and growth factors (here referred to collectively as cytokines) show robust modulation in proximal events of inflammation, immune response, and repair. These are key general processes in many toxicities; therefore, cytokines are commonly identified during biomarker discovery studies. In addition, multiplexed cytokine immunoassays are easily applied to biomarker discovery and routine toxicity studies to measure blood cytokines. However, cytokines pose several challenges as safety biomarkers because of a short serum half-life; low to undetectable baseline levels; lack of tissue-specific or toxicity-specific expression; complexities related to cytokine expression with multiorgan involvement; and species, strain, and interindividual differences. Additional challenges to their application are caused by analytical, methodological, and study design–related variables. A final consideration is the strength of the relationship between changes in cytokine levels and the development of phenotypic or functional manifestations of toxicity. These factors should inform the integrated judgment-based qualification of novel biomarkers in preclinical, and potentially clinical, risk assessment. The dearth of robust, predictive cytokine biomarkers for specific toxicities is an indication of the significant complexity of these challenges. This review will consider the current state of the science and recommendations for appropriate application of cytokines in preclinical safety assessment.


Science Translational Medicine | 2015

Effect of selective LRRK2 kinase inhibition on nonhuman primate lung

Reina N. Fuji; Michael Flagella; Miriam Baca; Marco A. S. Baptista; Jens Brodbeck; Bryan K. Chan; Brian K. Fiske; Lee Honigberg; Adrian M. Jubb; Paula Katavolos; Donna W. Lee; Sock-Cheng Lewin-Koh; Tori Lin; Xingrong Liu; Shannon Liu; Joseph P. Lyssikatos; Jennifer O'Mahony; Mike Reichelt; Merone Roose-Girma; Zejuan Sheng; Todd Sherer; Ashley Smith; Margaret Solon; Zachary Kevin Sweeney; Jacqueline M. Tarrant; Alison Urkowitz; Søren Warming; Murat Yaylaoglu; Shuo Zhang; Haitao Zhu

LRRK2 kinase inhibitors, under development for Parkinson’s disease, have an effect on type II pneumocytes in nonhuman primate lung, suggesting that pulmonary toxicity may be a critical safety liability. A lung phenotype for LRRK2 inhibitors Human genetic evidence implicates leucine-rich repeat kinase 2 (LRRK2) as a high-priority drug target for Parkinson’s disease. However, the benefit and risk of inhibiting the kinase activity of LRRK2 is unknown and is currently untested in humans. Using two selective LRRK2 kinase inhibitors, Fuji et al. report a safety liability in nonhuman primates characterized by morphological changes in lung. These results are consistent with observations in mice lacking LRRK2. These safety observations offer a cautionary note for pharmacological modulation of LRRK2 in humans. Inhibition of the kinase activity of leucine-rich repeat kinase 2 (LRRK2) is under investigation as a possible treatment for Parkinson’s disease. However, there is no clinical validation as yet, and the safety implications of targeting LRRK2 kinase activity are not well understood. We evaluated the potential safety risks by comparing human and mouse LRRK2 mRNA tissue expression, by analyzing a Lrrk2 knockout mouse model, and by testing selective brain-penetrating LRRK2 kinase inhibitors in multiple species. LRRK2 mRNA tissue expression was comparable between species. Phenotypic analysis of Lrrk2 knockout mice revealed morphologic changes in lungs and kidneys, similar to those reported previously. However, in preclinical toxicity assessments in rodents, no pulmonary or renal changes were induced by two distinct LRRK2 kinase inhibitors. Both of these kinase inhibitors induced abnormal cytoplasmic accumulation of secretory lysosome-related organelles known as lamellar bodies in type II pneumocytes of the lung in nonhuman primates, but no lysosomal abnormality was observed in the kidney. The pulmonary change resembled the phenotype of Lrrk2 knockout mice, suggesting that this was LRRK2-mediated rather than a nonspecific or off-target effect. A biomarker of lysosomal dysregulation, di-docosahexaenoyl (22:6) bis(monoacylglycerol) phosphate (di-22:6-BMP), was also decreased in the urine of Lrrk2 knockout mice and nonhuman primates treated with LRRK2 kinase inhibitors. Our results suggest a role for LRRK2 in regulating lysosome-related lamellar bodies and that pulmonary toxicity may be a critical safety liability for LRRK2 kinase inhibitors in patients.


Toxicologic Pathology | 2013

Unexpected Hematologic Effects of Biotherapeutics in Nonclinical Species and in Humans

Nancy E. Everds; Jacqueline M. Tarrant

Biotherapeutics are expanding the arsenal of therapeutics available for treating and preventing disease. Although initially thought to have limited side effects due to the specificity of their binding, these drugs have now been shown to have potential for adverse drug reactions including effects on peripheral blood cell counts or function. Hematotoxicity caused by a biotherapeutic can be directly related to the activity of the biotherapeutic or can be indirect and due to autoimmunity, biological cascades, antidrug antibodies, or other immune system responses. Biotherapeutics can cause hematotoxicity primarily as a result of cellular activation, cytotoxicity, drug-dependent and independent immune responses, and sequelae from initiating cytokine and complement cascades. The underlying pathogenesis of biotherapeutic-induced hematotoxicity often is poorly understood. Nonclinical studies have generally predicted clinical hematotoxicity for recombinant cytokines and growth factors. However, most hematologic liabilities of biotherapeutics are not based on drug class but are species specific, immune-mediated, and of low incidence. Despite the potential for unexpected hematologic toxicity, the risk–benefit profile of most biotherapeutics is favorable; hematologic effects are readily monitorable and managed by dose modification, drug withdrawal, and/or therapeutic intervention. This article reviews examples of biotherapeutics that have unexpected hematotoxicity in nonclinical or clinical studies.


Toxicological Sciences | 2013

Toxicity Profile of Small-Molecule IAP Antagonist GDC-0152 Is Linked to TNF-α Pharmacology

Rebecca Erickson; Jacqueline M. Tarrant; Gary Cain; Sock-Cheng Lewin-Koh; Noel Dybdal; Harvey Wong; Elizabeth Blackwood; Kristina West; Ronald Steigerwalt; Michael Mamounas; John A. Flygare; Kenjie Amemiya; Donna Dambach; Wayne J. Fairbrother

Inhibitor-of-apoptosis (IAP) proteins suppress apoptosis and are overexpressed in a variety of cancers. Small-molecule IAP antagonists are currently being tested in clinical trials as novel cancer therapeutics. GDC-0152 is a small-molecule drug that triggers tumor cell apoptosis by selectively antagonizing IAPs. GDC-0152 induces NF-κB transcriptional activity leading to expression of several chemokines and cytokines, of which tumor necrosis factor alpha (TNF-α) is the most important for single-agent tumor activity. TNF-α is a pleiotropic cytokine that drives a variety of cellular responses, comprising inflammation, proliferation, and cell survival or death depending on the cellular context. As malignant and normal cells produce TNF-α upon IAP antagonism, increased TNF-α could drive both efficacy and toxicity. The toxicity profile of GDC-0152 in dogs and rats was characterized after iv dose administration once every 2 weeks for four doses. Findings in both species consisted of a dose-related, acute, systemic inflammatory response, and hepatic injury. Laboratory findings included elevated plasma cytokines, an inflammatory leukogram, and increased liver transaminases with histopathological findings of inflammatory infiltrates and apoptosis/necrosis in multiple tissues; a toxicology profile consistent with TNF-α-mediated toxicity. Dogs exhibited more severe findings than rats, and humans did not exhibit these findings, at comparable exposures across species. Furthermore, elevations in blood neutrophil count, serum monocyte chemoattractant protein-1, and other markers of inflammation corresponded to GDC-0152 exposure and toxicity and thus may have utility as safety biomarkers.


Toxicological Sciences | 2012

Phosphorous Dysregulation Induced by MEK Small Molecule Inhibitors in the Rat Involves Blockade of FGF-23 Signaling in the Kidney

Krishna P. Allamneni; Jacqueline M. Tarrant; Sock-Cheng Lewin-Koh; Rama Pai; Preeti Dhawan; Gary Cain; Cleopatra Kozlowski; Hajime Hiraragi; Nghi La; Dylan P. Hartley; Xiao Ding; Brian Dean; Sheila Bheddah; Donna Dambach

MEK, a kinase downstream of Ras and Raf oncogenes, constitutes a high priority target in oncology research. MEK small molecule inhibitors cause soft tissue mineralization in rats secondary to serum inorganic phosphorus (iP) elevation, but the molecular mechanism for this toxicity remains undetermined. We performed investigative studies with structurally distinct MEK inhibitors GEN-A and PD325901 (PD-901) in Sprague-Dawley rats. Our data support a mechanism that involves FGF-23 signal blockade in the rat kidney, causing transcriptional upregulation of 25-hydroxyvitamin D(3) 1-alpha-hydroxylase (Cyp27b1), the rate-limiting enzyme in vitamin D activation, and downregulation of 1,25-dihydroxyvitamin D(3) 24-hydroxylase (Cyp24a1), the enzyme that initiates the degradation of the active form of vitamin D. These transcriptional changes increase serum vitamin D levels, which in turn drive the increase in serum iP, leading to soft tissue mineralization in the rat.


Toxicologic Pathology | 2013

Current Practices in Preclinical Drug Development Gaps in Hemostasis Testing to Assess Risk of Thromboembolic Injury

A. Eric Schultze; Dana Walker; James R. Turk; Jacqueline M. Tarrant; Marjory B. Brooks; Syril Pettit

The Health and Environmental Sciences Institute Cardiac Biomarkers Working Group surveyed the pharmaceutical development community to investigate practices in assessing hemostasis, including detection of hypocoagulable and hypercoagulable states. Scientists involved in discovery, preclinical, and clinical research were queried on laboratory evaluation of endothelium, platelets, coagulation, and fibrinolysis during safety assessment studies. Results indicated that laboratory assessment of hemostasis is inconsistent among institutions and not harmonized between preclinical and clinical studies. Hemostasis testing in preclinical drug safety studies primarily focuses on the risk of bleeding, whereas the clinical complication of thrombosis is seldom assessed. Our results reveal the need for broader utilization of biomarkers to detect altered hemostasis (e.g., endothelial and platelet activation) to improve preclinical safety assessments early in the drug development process. Survey respondents indicated a critical lack of validated markers of hypercoagulability and subclinical thrombosis in animal testing. Additional obstacles included limited blood volume, lack of cross-reacting antibodies for hemostasis testing in laboratory species, restricted availability of specialized hemostasis analyzers, and few centers of expertise in animal hemostasis testing. Establishment of translatable biomarkers of prothrombotic states in multiple species and strategic implementation of testing on an industry-wide basis are needed to better avert untoward drug complications in patient populations.


Toxicology Mechanisms and Methods | 2015

Preclinical models of nicotinamide phosphoribosyltransferase inhibitor-mediated hematotoxicity and mitigation by co-treatment with nicotinic acid

Jacqueline M. Tarrant; Preeti Dhawan; Jatinder Singh; Tanja S. Zabka; Emer Clarke; Garry DosSantos; Peter S. Dragovich; Deepak Sampath; Tori Lin; Bobbi McCray; Nghi La; Trung Nguyen; Ariel Kauss; Donna Dambach; Dinah Misner; Hirdesh Uppal

Abstract Nicotinamide adenine dinucleotide (NAD) is an essential co-factor in glycolysis and is a key molecule involved in maintaining cellular energy metabolism. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step of an important salvage pathway in which nicotinamide is recycled into NAD. NAMPT is up-regulated in many types of cancer and NAMPT inhibitors (NAMPTi) have potential therapeutic benefit in cancer by impairing tumor metabolism. Clinical trials with NAMPTi APO-866 and GMX-1778, however, failed to reach projected efficacious exposures due to dose-limiting thrombocytopenia. We evaluated preclinical models for thrombocytopenia that could be used in candidate drug selection and risk mitigation strategies for NAMPTi-related toxicity. Rats treated with a suite of structurally diverse and potent NAMPTi at maximum tolerated doses had decreased reticulocyte and lymphocyte counts, but no thrombocytopenia. We therefore evaluated and qualified a human colony forming unit-megakaryocyte (CFU-MK) as in vitro predictive model of NAMPTi-induced MK toxicity and thrombocytopenia. We further demonstrate that the MK toxicity is on-target based on the evidence that nicotinic acid (NA), which is converted to NAD via a NAMPT-independent pathway, can mitigate NAMPTi toxicity to human CFU-MK in vitro and was also protective for the hematotoxicity in rats in vivo. Finally, assessment of CFU-MK and human platelet bioenergetics and function show that NAMPTi was toxic to MK and not platelets, which is consistent with the clinically observed time-course of thrombocytopenia.


Toxicological Sciences | 2016

Therapeutic Antibody-Induced Vascular Toxicity Due to Off-Target Activation of Nitric Oxide in Cynomolgus Monkeys.

Rama Pai; Ning Ma; Anu V. Connor; Dimitry M. Danilenko; Jacqueline M. Tarrant; Dany Salvail; Lisa Wong; Dylan P. Hartley; Dinah Misner; Eric Stefanich; Yan Wu; Yongmei Chen; Hong Wang; Donna Dambach

PRO304186, a humanized monoclonal antibody targeting soluble interleukin-17 A and F, was developed for autoimmune and inflammatory disease indications. When administered to cynomolgus monkeys PRO304186 induced unexpected adverse effects characterized by clinical signs of hematemesis, hematochezia, and moribundity. Pathology findings included hemorrhage throughout the gastrointestinal tract without any evidence of vascular wall damage or inflammatory cellular infiltration. Mechanistic investigation of these effects revealed mild elevations of serum MCP-1 and IL-12/23 but without a classical proinflammatory profile in PRO304186-treated animals. In vitro studies demonstrated off-target effects on vascular endothelial cells including activation of nitric oxide synthase leading to production of nitric oxide (NO) accompanied by increased mitochondrial membrane depolarization, glutathione depletion, and increased paracellular permeability. Additionally, endothelial cell-PRO304186-conditioned medium reduced myosin light chain phosphorylation in vascular smooth muscle cells. Furthermore, an ex vivo study utilizing segments from cynomolgus aorta and femoral artery confirmed PRO304186-induced endothelium-dependent smooth muscle relaxation and vasodilation mediated via NO. Finally, a single dose of PRO304186 in cynomolgus monkeys induced a rapid and pronounced increase in NO in the portal circulation that preceded a milder elevation of NO in the systemic circulation and corresponded temporally with systemic hypotension; findings consistent with NO-mediated vasodilation leading to hypotension. These changes were associated with non-inflammatory, localized hemorrhage in the gastrointestinal tract consistent with hemodynamic vascular injury associated with intense local vasodilation. Together, these data demonstrate that PRO304186-associated toxicity in monkeys was due to an off-target effect on endothelium that involved regional NO release resulting in severe systemic vasodilation, hypotension, and hemorrhage.

Collaboration


Dive into the Jacqueline M. Tarrant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge