Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques Boncy is active.

Publication


Featured researches published by Jacques Boncy.


The New England Journal of Medicine | 2013

Cholera Surveillance during the Haiti Epidemic — The First 2 Years

Ezra J. Barzilay; Nicolas Schaad; Roc Magloire; Kam Mung; Jacques Boncy; Georges Dahourou; Eric D. Mintz; Maria W. Steenland; John Vertefeuille; Jordan W. Tappero

BACKGROUND In October 2010, nearly 10 months after a devastating earthquake, Haiti was stricken by epidemic cholera. Within days after detection, the Ministry of Public Health and Population established a National Cholera Surveillance System (NCSS). METHODS The NCSS used a modified World Health Organization case definition for cholera that included acute watery diarrhea, with or without vomiting, in persons of all ages residing in an area in which at least one case of Vibrio cholerae O1 infection had been confirmed by culture. RESULTS Within 29 days after the first report, cases of V. cholerae O1 (serotype Ogawa, biotype El Tor) were confirmed in all 10 administrative departments (similar to states or provinces) in Haiti. Through October 20, 2012, the public health ministry reported 604,634 cases of infection, 329,697 hospitalizations, and 7436 deaths from cholera and isolated V. cholerae O1 from 1675 of 2703 stool specimens tested (62.0%). The cumulative attack rate was 5.1% at the end of the first year and 6.1% at the end of the second year. The cumulative case fatality rate consistently trended downward, reaching 1.2% at the close of year 2, with departmental cumulative rates ranging from 0.6% to 4.6% (median, 1.4%). Within 3 months after the start of the epidemic, the rolling 14-day case fatality rate was 1.0% and remained at or below this level with few, brief exceptions. Overall, the cholera epidemic in Haiti accounted for 57% of all cholera cases and 53% of all cholera deaths reported to the World Health Organization in 2010 and 58% of all cholera cases and 37% of all cholera deaths in 2011. CONCLUSIONS A review of NCSS data shows that during the first 2 years of the cholera epidemic in Haiti, the cumulative attack rate was 6.1%, with cases reported in all 10 departments. Within 3 months after the first case was reported, there was a downward trend in mortality, with a 14-day case fatality rate of 1.0% or less in most areas.


Emerging Infectious Diseases | 2011

Comparative Genomics of Vibrio cholerae from Haiti, Asia, and Africa

Aleisha R. Reimer; Gary Van Domselaar; Steven Stroika; Matthew Walker; Heather Kent; Cheryl L. Tarr; Deborah F. Talkington; Lori A. Rowe; Melissa Olsen-Rasmussen; Michael Frace; Scott Sammons; Georges Dahourou; Jacques Boncy; Anthony M. Smith; Philip Mabon; Aaron Petkau; Morag Graham; Matthew W. Gilmour; Peter Gerner-Smidt

A strain from Haiti shares genetic ancestry with those from Asia and Africa.


Mbio | 2013

Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti

Lee S. Katz; Aaron Petkau; John Beaulaurier; Shaun Tyler; Elena S. Antonova; Maryann Turnsek; Yan Guo; Susana Wang; Ellen E. Paxinos; Fabini D. Orata; Lori Gladney; Steven Stroika; Jason P. Folster; Lori A. Rowe; Molly M. Freeman; Natalie Knox; Mike Frace; Jacques Boncy; Morag Graham; Brian K. Hammer; Yan Boucher; Ali Bashir; William P. Hanage; Gary Van Domselaar; Cheryl L. Tarr

ABSTRACT Prior to the epidemic that emerged in Haiti in October of 2010, cholera had not been documented in this country. After its introduction, a strain of Vibrio cholerae O1 spread rapidly throughout Haiti, where it caused over 600,000 cases of disease and >7,500 deaths in the first two years of the epidemic. We applied whole-genome sequencing to a temporal series of V. cholerae isolates from Haiti to gain insight into the mode and tempo of evolution in this isolated population of V. cholerae O1. Phylogenetic and Bayesian analyses supported the hypothesis that all isolates in the sample set diverged from a common ancestor within a time frame that is consistent with epidemiological observations. A pangenome analysis showed nearly homogeneous genomic content, with no evidence of gene acquisition among Haiti isolates. Nine nearly closed genomes assembled from continuous-long-read data showed evidence of genome rearrangements and supported the observation of no gene acquisition among isolates. Thus, intrinsic mutational processes can account for virtually all of the observed genetic polymorphism, with no demonstrable contribution from horizontal gene transfer (HGT). Consistent with this, the 12 Haiti isolates tested by laboratory HGT assays were severely impaired for transformation, although unlike previously characterized noncompetent V. cholerae isolates, each expressed hapR and possessed a functional quorum-sensing system. Continued monitoring of V. cholerae in Haiti will illuminate the processes influencing the origin and fate of genome variants, which will facilitate interpretation of genetic variation in future epidemics. IMPORTANCE Vibrio cholerae is the cause of substantial morbidity and mortality worldwide, with over three million cases of disease each year. An understanding of the mode and rate of evolutionary change is critical for proper interpretation of genome sequence data and attribution of outbreak sources. The Haiti epidemic provides an unprecedented opportunity to study an isolated, single-source outbreak of Vibrio cholerae O1 over an established time frame. By using multiple approaches to assay genetic variation, we found no evidence that the Haiti strain has acquired any genes by horizontal gene transfer, an observation that led us to discover that it is also poorly transformable. We have found no evidence that environmental strains have played a role in the evolution of the outbreak strain. Vibrio cholerae is the cause of substantial morbidity and mortality worldwide, with over three million cases of disease each year. An understanding of the mode and rate of evolutionary change is critical for proper interpretation of genome sequence data and attribution of outbreak sources. The Haiti epidemic provides an unprecedented opportunity to study an isolated, single-source outbreak of Vibrio cholerae O1 over an established time frame. By using multiple approaches to assay genetic variation, we found no evidence that the Haiti strain has acquired any genes by horizontal gene transfer, an observation that led us to discover that it is also poorly transformable. We have found no evidence that environmental strains have played a role in the evolution of the outbreak strain.


Emerging Infectious Diseases | 2011

Characterization of Toxigenic Vibrio cholerae from Haiti, 2010-2011

Deborah F. Talkington; Cheryl A. Bopp; Cheryl L. Tarr; Michele B. Parsons; Georges Dahourou; Molly M. Freeman; Kevin Joyce; Maryann Turnsek; Nancy M. Garrett; Michael Humphrys; Gerardo A. Gómez; Steven Stroika; Jacques Boncy; Benjamin Ochieng; Joseph Oundo; John D. Klena; Anthony M. Smith; Karen H. Keddy; Peter Gerner-Smidt

A virulent clone from Africa or southern Asia was likely introduced at a single time point.


Emerging Infectious Diseases | 2011

Drug-Resistance Mechanisms in Vibrio cholerae O1 Outbreak Strain, Haiti, 2010

Maria Sjölund-Karlsson; Aleisha Reimer; Jason P. Folster; Matthew Walker; Georges Dahourou; Dhwani Govil Batra; Irene Martin; Kevin Joyce; Michele B. Parsons; Jacques Boncy; Jean M. Whichard; Matthew W. Gilmour

To increase understanding of drug-resistant Vibrio cholerae, we studied selected molecular mechanisms of antimicrobial drug resistance in the 2010 Haiti V. cholerae outbreak strain. Most resistance resulted from acquired genes located on an integrating conjugative element showing high homology to an integrating conjugative element identified in a V. cholerae isolate from India.


PLOS Neglected Tropical Diseases | 2013

Spatio-temporal dynamics of cholera during the first year of the epidemic in Haiti.

Jean Gaudart; Stanislas Rebaudet; Robert Barrais; Jacques Boncy; Benoit Faucher; Martine Piarroux; Roc Magloire; Gabriel Thimothe; Renaud Piarroux

Background In October 2010, cholera importation in Haiti triggered an epidemic that rapidly proved to be the worlds largest epidemic of the seventh cholera pandemic. To establish effective control and elimination policies, strategies rely on the analysis of cholera dynamics. In this report, we describe the spatio-temporal dynamics of cholera and the associated environmental factors. Methodology/Principal findings Cholera-associated morbidity and mortality data were prospectively collected at the commune level according to the World Health Organization standard definition. Attack and mortality rates were estimated and mapped to assess epidemic clusters and trends. The relationships between environmental factors were assessed at the commune level using multivariate analysis. The global attack and mortality rates were 488.9 cases/10,000 inhabitants and 6.24 deaths/10,000 inhabitants, respectively. Attack rates displayed a significantly high level of spatial heterogeneity (varying from 64.7 to 3070.9 per 10,000 inhabitants), thereby suggesting disparate outbreak processes. The epidemic course exhibited two principal outbreaks. The first outbreak (October 16, 2010–January 30, 2011) displayed a centrifugal spread of a damping wave that suddenly emerged from Mirebalais. The second outbreak began at the end of May 2011, concomitant with the onset of the rainy season, and displayed a highly fragmented epidemic pattern. Environmental factors (river and rice fields: p<0.003) played a role in disease dynamics exclusively during the early phases of the epidemic. Conclusion Our findings demonstrate that the epidemic is still evolving, with a changing transmission pattern as time passes. Such an evolution could have hardly been anticipated, especially in a country struck by cholera for the first time. These results argue for the need for control measures involving intense efforts in rapid and exhaustive case tracking.


eLife | 2014

Evolutionary consequences of intra-patient phage predation on microbial populations

Kimberley D. Seed; Minmin Yen; B. Jesse Shapiro; Isabelle J. Hilaire; Richelle C. Charles; Jessica E. Teng; Louise C. Ivers; Jacques Boncy; Jason B. Harris; Andrew Camilli

The impact of phage predation on bacterial pathogens in the context of human disease is not currently appreciated. Here, we show that predatory interactions of a phage with an important environmentally transmitted pathogen, Vibrio cholerae, can modulate the evolutionary trajectory of this pathogen during the natural course of infection within individual patients. We analyzed geographically and temporally disparate cholera patient stool samples from Haiti and Bangladesh and found that phage predation can drive the genomic diversity of intra-patient V. cholerae populations. Intra-patient phage-sensitive and phage-resistant isolates were isogenic except for mutations conferring phage resistance, and moreover, phage-resistant V. cholerae populations were composed of a heterogeneous mix of many unique mutants. We also observed that phage predation can significantly alter the virulence potential of V. cholerae shed from cholera patients. We provide the first molecular evidence for predatory phage shaping microbial community structure during the natural course of infection in humans. DOI: http://dx.doi.org/10.7554/eLife.03497.001


The Lancet Global Health | 2015

Effectiveness of reactive oral cholera vaccination in rural Haiti: a case-control study and bias-indicator analysis

Louise C. Ivers; Isabelle J. Hilaire; Jessica E. Teng; Charles P. Almazor; J. Gregory Jerome; Ralph Ternier; Jacques Boncy; Josiane Buteau; Megan Murray; Jason B. Harris; Molly F. Franke

BACKGROUND Between April and June, 2012, a reactive cholera vaccination campaign was done in Haiti with an oral inactivated bivalent whole-cell vaccine. We aimed to assess the effectiveness of the vaccine in a case-control study and to assess the likelihood of bias in that study in a bias-indicator study. METHODS Residents of Bocozel or Grand Saline who were eligible for the vaccination campaign (ie, age ≥12 months, not pregnant, and living in the region at the time of the vaccine campaign) were included. In the primary case-control study, cases had acute watery diarrhoea, sought treatment at one of three participating cholera treatment units, and had a stool sample positive for cholera by culture. For each case, four control individuals who did not seek treatment for acute watery diarrhoea were matched by location of residence, enrolment time (within 2 weeks of the case), and age (1-4 years, 5-15 years, and >15 years). Cases in the bias-indicator study were individuals with acute watery diarrhoea with a negative stool sample for cholera. Controls were selected in the same manner as in the primary case-control study. Trained staff used standard laboratory procedures to do rapid tests and stool cultures from study cases. Participants were interviewed to collect data on sociodemographic characteristics, risk factors for cholera, and self-reported vaccination. Data were analysed by conditional logistic regression, adjusting for matching factors. FINDINGS From Oct 24, 2012, to March 9, 2014, 114 eligible individuals presented with acute watery diarrhoea and were enrolled, 25 of whom were subsequently excluded. 47 participants were analysed as cases in the vaccine effectiveness case-control study and 42 as cases in the bias-indicator study. 33 (70%) of 47 cholera cases self-reported vaccination versus 167 (89%) of 188 controls (vaccine effectiveness 63%, 95% CI 8-85). 27 (57%) of 47 cases had certified vaccination versus 147 (78%) of 188 controls (vaccine effectiveness 58%, 13-80). Neither self-reported nor verified vaccination was significantly associated with non-cholera diarrhoea (vaccine effectiveness 18%, 95% CI -208 to 78 by self-report and -21%, -238 to 57 by verified vaccination). INTERPRETATION Bivalent whole-cell oral cholera vaccine effectively protected against cholera in Haiti from 4 months to 24 months after vaccination. Vaccination is an important component of efforts to control cholera epidemics. FUNDING National Institutes of Health, Delivering Oral Vaccines Effectively project, and Department of Global Health and Social Medicine at Harvard Medical School.


Emerging Infectious Diseases | 2011

Toxigenic Vibrio cholerae O1 in Water and Seafood, Haiti

Vincent R. Hill; Nicole J. Cohen; Amy M. Kahler; Jessica L. Jones; Cheryl A. Bopp; Nina Marano; Cheryl L. Tarr; Nancy M. Garrett; Jacques Boncy; Ariel Henry; Gerardo A. Gómez; Michael Wellman; Maurice Curtis; Molly M. Freeman; Maryann Turnsek; Ronald A. Benner; Georges Dahourou; David Espey; Angelo DePaola; Jordan W. Tappero; Tom Handzel; Robert V. Tauxe

During the 2010 cholera outbreak in Haiti, water and seafood samples were collected to detect Vibrio cholerae. The outbreak strain of toxigenic V. cholerae O1 serotype Ogawa was isolated from freshwater and seafood samples. The cholera toxin gene was detected in harbor water samples.


American Journal of Tropical Medicine and Hygiene | 2013

Seroepidemiologic Survey of Epidemic Cholera in Haiti to Assess Spectrum of Illness and Risk Factors for Severe Disease

Brendan R. Jackson; Deborah F. Talkington; James Pruckler; M. D. Bernadette Fouché; Elsie Lafosse; Benjamin Nygren; Gerardo A. Gómez; Georges Dahourou; W. Roodly Archer; Amanda B. Payne; W. Craig Hooper; Jordan W. Tappero; Gordana Derado; Roc Magloire; Peter Gerner-Smidt; Nicole Freeman; Jacques Boncy; Eric D. Mintz

To assess the spectrum of illness from toxigenic Vibrio cholerae O1 and risk factors for severe cholera in Haiti, we conducted a cross-sectional survey in a rural commune with more than 21,000 residents. During March 22–April 6, 2011, we interviewed 2,622 residents ≥ 2 years of age and tested serum specimens from 2,527 (96%) participants for vibriocidal and antibodies against cholera toxin; 18% of participants reported a cholera diagnosis, 39% had vibriocidal titers ≥ 320, and 64% had vibriocidal titers ≥ 80, suggesting widespread infection. Among seropositive participants (vibriocidal titers ≥ 320), 74.5% reported no diarrhea and 9.0% had severe cholera (reported receiving intravenous fluids and overnight hospitalization). This high burden of severe cholera is likely explained by the lack of pre-existing immunity in this population, although the virulence of the atypical El Tor strain causing the epidemic and other factors might also play a role.

Collaboration


Dive into the Jacques Boncy's collaboration.

Top Co-Authors

Avatar

Josiane Buteau

Public health laboratory

View shared research outputs
Top Co-Authors

Avatar

Georges Dahourou

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Barbara J. Marston

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Frantz Jean Louis

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheryl L. Tarr

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

David L. Fitter

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

David W. Lowrance

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Mark A. Katz

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge