Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques R. Vanfleteren is active.

Publication


Featured researches published by Jacques R. Vanfleteren.


Systematic Entomology | 2010

A molecular phylogeny of the Odonata (Insecta)

Henri J. Dumont; Andy Vierstraete; Jacques R. Vanfleteren

Abstract. We estimated the phylogeny of the order Odonata, based on sequences of the nuclear ribosomal genes 5.8 S, 18S, and ITS1 and 2. An 18S‐only analysis resolved deep relationships well: the order Odonata, as well as suborders Zygoptera and Epiprocta (Anisoptera + Epiophlebia), emerged as monophyletic. Some other deep clades resolved well, but support for more recently diverged clades was generally weak. A second, simultaneous, analysis of the 5.8S and 18S genes with the intergenic spacers ITS1 and 2 resolved some recent branches better, but appeared less reliable for deep clades with, for example, suborder Anisoptera emerging as paraphyletic and Epiophlebia superstes recovered as an Anisopteran, embedded within aeshnoid‐like anisopterans and sister to the cordulegastrids. Most existing family levels in the Anisoptera were confirmed as monophyletic clades in both analyses. However, within the corduliids that form a major monophyletic clade with the Libellulidae, several subclades were recovered, of which at least Macromiidae and Oxygastridae are accepted at the family level. In the Zygoptera, the situation is complex. The lestid‐like family groups (here called Lestomorpha) emerged as sister taxon to all other zygopterans, with Hemiphlebia sister to all other lestomorphs. Platystictidae formed a second monophylum, subordinated to lestomorphs. At the next level, some traditional clades were confirmed, but the tropical families Megapodagrionidae and Amphipterygidae were recovered as strongly polyphyletic, and tended to nest within the clade Caloptera, rendering it polyphyletic. Platycnemididae were also non‐monophyletic, with several representatives of uncertain placement. Coenagrionids were diphyletic. True Platycnemididae and non‐American Protoneurids are closely related, but their relationship to the other zygopterans remains obscure and needs more study. New World protoneurids appeared relatively unrelated to old world + Australian protoneurids. Several recent taxonomic changes at the genus level, based on morphology, were confirmed, but other morphology‐based taxonomies have misclassified taxa considered currently as Megapodagrionidae, Platycnemididae and Amphipterygidae and have underestimated the number of family‐level clades.


Molecular Systems Biology | 2010

DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO

Eugene Schuster; Joshua J. McElwee; Jennifer M. A. Tullet; Ryan Doonan; Filip Matthijssens; John S. Reece-Hoyes; Ian A. Hope; Jacques R. Vanfleteren; Janet M. Thornton; David Gems

Insulin/IGF‐1 signaling controls metabolism, stress resistance and aging in Caenorhabditis elegans by regulating the activity of the DAF‐16/FoxO transcription factor (TF). However, the function of DAF‐16 and the topology of the transcriptional network that it crowns remain unclear. Using chromatin profiling by DNA adenine methyltransferase identification (DamID), we identified 907 genes that are bound by DAF‐16. These were enriched for genes showing DAF‐16‐dependent upregulation in long‐lived daf‐2 insulin/IGF‐1 receptor mutants (P=1.4e−11). Cross‐referencing DAF‐16 targets with these upregulated genes (daf‐2 versus daf‐16; daf‐2) identified 65 genes that were DAF‐16 regulatory targets. These 65 were enriched for signaling genes, including known determinants of longevity, but not for genes specifying somatic maintenance functions (e.g. detoxification, repair). This suggests that DAF‐16 acts within a relatively small transcriptional subnetwork activating (but not suppressing) other regulators of stress resistance and aging, rather than directly regulating terminal effectors of longevity. For most genes bound by DAF‐16∷DAM, transcriptional regulation by DAF‐16 was not detected, perhaps reflecting transcriptionally non‐functional TF ‘parking sites’. This study demonstrates the efficacy of DamID for chromatin profiling in C. elegans.


Free Radical Biology and Medicine | 2012

Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans.

Patricia Back; Winnok H. De Vos; Geert Depuydt; Filip Matthijssens; Jacques R. Vanfleteren; Bart P. Braeckman

Reactive oxygen species (ROS) are no longer considered merely toxic by-products of the oxidative metabolism. Tightly controlled concentrations of ROS and fluctuations in redox potential may be important mediators of signaling processes. Understanding the role of ROS and redox status in physiology, stress response, development, and aging requires their nondisruptive, spatiotemporal, real-time quantification in a living organism. We established Caenorhabditis elegans strains bearing the genetically encoded fluorescent biosensors HyPer and Grx1-roGFP2 for the detection of hydrogen peroxide (H(2)O(2)) and the glutathione redox potential, respectively. Although, given its transparency and genetic tractability, C. elegans is perfectly suitable as a model organism for such approaches, they have never been tried before in this nematode. We found that H(2)O(2) treatment clearly induces a dose-dependent, reversible response of both biosensors in the living worms. The ratio of oxidized to reduced glutathione decreases during postembryonic development. H(2)O(2) levels increase with age and this effect is delayed when life span is extended by dietary restriction. In young adults, we detected several regions with distinct redox properties that may be linked to their biological function. Our findings demonstrate that genetically encoded biosensors can reveal previously unknown details of in vivo redox biology in multicellular organisms.


BMC Biology | 2010

Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing Caenorhabditis elegans.

Kristel Brys; Natascha Castelein; Filip Matthijssens; Jacques R. Vanfleteren; Bart P. Braeckman

BackgroundThe gene daf-2 encodes the single insulin/insulin growth factor-1-like receptor of Caenorhabditis elegans. The reduction-of-function allele e1370 induces several metabolic alterations and doubles lifespan.ResultsWe found that the e1370 mutation alters aerobic energy production substantially. In wild-type worms the abundance of key mitochondrial proteins declines with age, accompanied by a dramatic decrease in energy production, although the mitochondrial mass, inferred from the mitochondrial DNA copy number, remains unaltered. In contrast, the age-dependent decrease of both key mitochondrial proteins and bioenergetic competence is considerably attenuated in daf-2(e1370) adult animals. The increase in daf-2(e1370) mitochondrial competence is associated with a higher membrane potential and increased reactive oxygen species production, but with little damage to mitochondrial protein or DNA. Together these results point to a higher energetic efficiency of daf-2(e1370) animals.ConclusionsWe conclude that low daf-2 function alters the overall rate of ageing by a yet unidentified mechanism with an indirect protective effect on mitochondrial function.


Nature Communications | 2015

A redox signalling globin is essential for reproduction in Caenorhabditis elegans

Sasha De Henau; Lesley Tilleman; Matthew Vangheel; Evi Luyckx; Stanislav A. Trashin; Martje Pauwels; Francesca Germani; Caroline Vlaeminck; Jacques R. Vanfleteren; Wim Bert; Alessandra Pesce; Marco Nardini; Martino Bolognesi; Karolien De Wael; Luc Moens; Sylvia Dewilde; Bart P. Braeckman

Moderate levels of reactive oxygen species (ROS) are now recognized as redox signalling molecules. However, thus far, only mitochondria and NADPH oxidases have been identified as cellular sources of ROS in signalling. Here we identify a globin (GLB-12) that produces superoxide, a type of ROS, which serves as an essential signal for reproduction in C. elegans. We find that GLB-12 has an important role in the regulation of multiple aspects in germline development, including germ cell apoptosis. We further describe how GLB-12 displays specific molecular, biochemical and structural properties that allow this globin to act as a superoxide generator. In addition, both an intra- and extracellular superoxide dismutase act as key partners of GLB-12 to create a transmembrane redox signal. Our results show that a globin can function as a driving factor in redox signalling, and how this signal is regulated at the subcellular level by multiple control layers.


Iubmb Life | 2011

Globins in Caenorhabditis elegans

Lesley Tilleman; Francesca Germani; Sasha De Henau; Eva Geuens; David Hoogewijs; Bart P. Braeckman; Jacques R. Vanfleteren; Luc Moens; Sylvia Dewilde

Extensive in silico search of the genome of Caenorhabditis elegans revealed the presence of 33 genes coding for globins that are all transcribed. These globins are very diverse in gene and protein structure and are localized in a variety of cells, mostly neurons. The large number of C. elegans globin genes is assumed to be the result of multiple evolutionary duplication and radiation events. Processes of subfunctionalization and diversification probably led to their cell‐specific expression patterns and fixation into the genome. To date, four globins (GLB‐1, GLB‐5, GLB‐6, and GLB‐26) have been partially characterized physicochemically, and the crystallographic structure of two of them (GLB‐1 and GLB‐6) was solved. In this article, a three‐dimensional model was designed for the other two globins (GLB‐5 and GLB‐26), and overlays of the globins were constructed to highlight the structural diversity among them. It is clear that although they all share the globin fold, small variations in the three‐dimensional structure have major implications on their ligand‐binding properties and possibly their function. We also review here all the information available so far on the globin family of C. elegans and suggest potential functions.


Analytical Biochemistry | 2012

A simplified hydroethidine method for fast and accurate detection of superoxide production in isolated mitochondria.

Patricia Back; Filip Matthijssens; Jacques R. Vanfleteren; Bart P. Braeckman

Because superoxide is involved in various physiological processes, many efforts have been made to improve its accurate quantification. We optimized and validated a superoxide-specific and -sensitive detection method. The protocol is based on fluorescence detection of the superoxide-specific hydroethidine (HE) oxidation product, 2-hydroxyethidium. We established a method for the quantification of superoxide production in isolated mitochondria without the need for acetone extraction and purification chromatography as described in previous studies.


Advances in Experimental Medicine and Biology | 2010

Protein Metabolism and Lifespan in Caenorhabditis elegans

Geert Depuydt; Jacques R. Vanfleteren; Bart P. Braeckman

Lifespan of the versatile model system Caenorhabditis elegans can be extended by a decrease of insulin/IGF-1 signaling, TOR signaling, mitochondrial function, protein synthesis and dietary intake. The exact molecular mechanisms by which these modulations confer increased life expectancy are yet to be determined but increased stress resistance and improved protein homeostasis seem to be of major importance. In this chapter, we explore the interactions among several genetic pathways and cellular functions involved in lifespan extension and their relation to protein homeostasis in C. elegans. Several of these processes have been associated, however some relevant data are conflicting and further studies are needed to clarify these interactions. In mammals, protein homeostasis is also implicated in several neurodegenerative diseases, many of which can be modeled in C. elegans.


Journal of Biogeography | 2011

Biogeography and evolution of the Holarctic zooplankton genus Leptodora (Crustacea: Branchiopoda: Haplopoda)

Lei Xu; Bo-Ping Han; Kay Van Damme; Andy Vierstraete; Jacques R. Vanfleteren; Henri J. Dumont


Belgian Journal of Zoology | 2013

Hurdles in investigating UVB damage in the putative ancient asexual Darwinula stevensoni (Ostracoda, Crustacea)

Lynn Van den Broecke; Jacques R. Vanfleteren; Koenraad Martens; Isa Schön

Collaboration


Dive into the Jacques R. Vanfleteren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc Moens

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge