Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filip Matthijssens is active.

Publication


Featured researches published by Filip Matthijssens.


Genes & Development | 2008

Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans

Ryan Doonan; Joshua J. McElwee; Filip Matthijssens; Glenda A. Walker; Koen Houthoofd; Patricia Back; Andrea Matscheski; Jacques R. Vanfleteren; David Gems

The superoxide radical (O(2)(-)) has long been considered a major cause of aging. O(2)(-) in cytosolic, extracellular, and mitochondrial pools is detoxified by dedicated superoxide dismutase (SOD) isoforms. We tested the impact of each SOD isoform in Caenorhabditis elegans by manipulating its five sod genes and saw no major effects on life span. sod genes are not required for daf-2 insulin/IGF-1 receptor mutant longevity. However, loss of the extracellular Cu/ZnSOD sod-4 enhances daf-2 longevity and constitutive diapause, suggesting a signaling role for sod-4. Overall, these findings imply that O(2)(-) is not a major determinant of aging in C. elegans.


BMC Molecular Biology | 2008

Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans.

David Hoogewijs; Koen Houthoofd; Filip Matthijssens; Jo Vandesompele; Jacques R. Vanfleteren

BackgroundIn the nematode Caenorhabditis elegans the conserved Ins/IGF-1 signaling pathway regulates many biological processes including life span, stress response, dauer diapause and metabolism. Detection of differentially expressed genes may contribute to a better understanding of the mechanism by which the Ins/IGF-1 signaling pathway regulates these processes. Appropriate normalization is an essential prerequisite for obtaining accurate and reproducible quantification of gene expression levels. The aim of this study was to establish a reliable set of reference genes for gene expression analysis in C. elegans.ResultsReal-time quantitative PCR was used to evaluate the expression stability of 12 candidate reference genes (act-1, ama-1, cdc-42, csq-1, eif-3.C, mdh-1, gpd-2, pmp-3, tba-1, Y45F10D.4, rgs-6 and unc-16) in wild-type, three Ins/IGF-1 pathway mutants, dauers and L3 stage larvae. After geNorm analysis, cdc-42, pmp-3 and Y45F10D.4 showed the most stable expression pattern and were used to normalize 5 sod expression levels. Significant differences in mRNA levels were observed for sod-1 and sod-3 in daf-2 relative to wild-type animals, whereas in dauers sod-1, sod-3, sod-4 and sod-5 are differentially expressed relative to third stage larvae.ConclusionOur findings emphasize the importance of accurate normalization using stably expressed reference genes. The methodology used in this study is generally applicable to reliably quantify gene expression levels in the nematode C. elegans using quantitative PCR.


Blood | 2015

The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia

Joni Van der Meulen; Viraj Sanghvi; Konstantinos Mavrakis; Kaat Durinck; Fang Fang; Filip Matthijssens; Pieter Rondou; Monica Rosen; Tim Pieters; Peter Vandenberghe; Eric Delabesse; Tim Lammens; Barbara De Moerloose; Björn Menten; Nadine Van Roy; Bruno Verhasselt; Bruce Poppe; Yves Benoit; Tom Taghon; Ari Melnick; Franki Speleman; Hans-Guido Wendel; Pieter Van Vlierberghe

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia that is mainly diagnosed in children and shows a skewed gender distribution toward males. In this study, we report somatic loss-of-function mutations in the X-linked histone H3K27me3 demethylase ubiquitously transcribed X (UTX) chromosome, in human T-ALL. Interestingly, UTX mutations were exclusively present in male T-ALL patients and allelic expression analysis revealed that UTX escapes X-inactivation in female T-ALL lymphoblasts and normal T cells. Notably, we demonstrate in vitro and in vivo that the H3K27me3 demethylase UTX functions as a bona fide tumor suppressor in T-ALL. Moreover, T-ALL driven by UTX inactivation exhibits collateral sensitivity to pharmacologic H3K27me3 inhibition. All together, our results show how a gender-specific and therapeutically relevant defect in balancing H3K27 methylation contributes to T-cell leukemogenesis.


Blood | 2014

ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia

Sofie Peirs; Filip Matthijssens; Steven Goossens; Inge Vande Walle; Katia Ruggero; Charles E. de Bock; Sandrine Degryse; Kirsten Canté-Barrett; Delphine Briot; Emmanuelle Clappier; Tim Lammens; Barbara De Moerloose; Yves Benoit; Bruce Poppe; Jules P.P. Meijerink; Jan Cools; Jean Soulier; Terence H. Rabbitts; Tom Taghon; Franki Speleman; Pieter Van Vlierberghe

T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype of acute lymphoblastic leukemia (ALL) with gradually improved survival through introduction of intensified chemotherapy. However, therapy-resistant or refractory T-ALL remains a major clinical challenge. Here, we evaluated B-cell lymphoma (BCL)-2 inhibition by the BH3 mimetic ABT-199 as a new therapeutic strategy in human T-ALL. The T-ALL cell line LOUCY, which shows a transcriptional program related to immature T-ALL, exhibited high in vitro and in vivo sensitivity for ABT-199 in correspondence with high levels of BCL-2. In addition, ABT-199 showed synergistic therapeutic effects with different chemotherapeutic agents including doxorubicin, l-asparaginase, and dexamethasone. Furthermore, in vitro analysis of primary patient samples indicated that some immature, TLX3- or HOXA-positive primary T-ALLs are highly sensitive to BCL-2 inhibition, whereas TAL1 driven tumors mostly showed poor ABT-199 responses. Because BCL-2 shows high expression in early T-cell precursors and gradually decreases during normal T-cell differentiation, differences in ABT-199 sensitivity could partially be mediated by distinct stages of differentiation arrest between different molecular genetic subtypes of human T-ALL. In conclusion, our study highlights BCL-2 as an attractive molecular target in specific subtypes of human T-ALL that could be exploited by ABT-199.


Molecular Systems Biology | 2010

DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO

Eugene Schuster; Joshua J. McElwee; Jennifer M. A. Tullet; Ryan Doonan; Filip Matthijssens; John S. Reece-Hoyes; Ian A. Hope; Jacques R. Vanfleteren; Janet M. Thornton; David Gems

Insulin/IGF‐1 signaling controls metabolism, stress resistance and aging in Caenorhabditis elegans by regulating the activity of the DAF‐16/FoxO transcription factor (TF). However, the function of DAF‐16 and the topology of the transcriptional network that it crowns remain unclear. Using chromatin profiling by DNA adenine methyltransferase identification (DamID), we identified 907 genes that are bound by DAF‐16. These were enriched for genes showing DAF‐16‐dependent upregulation in long‐lived daf‐2 insulin/IGF‐1 receptor mutants (P=1.4e−11). Cross‐referencing DAF‐16 targets with these upregulated genes (daf‐2 versus daf‐16; daf‐2) identified 65 genes that were DAF‐16 regulatory targets. These 65 were enriched for signaling genes, including known determinants of longevity, but not for genes specifying somatic maintenance functions (e.g. detoxification, repair). This suggests that DAF‐16 acts within a relatively small transcriptional subnetwork activating (but not suppressing) other regulators of stress resistance and aging, rather than directly regulating terminal effectors of longevity. For most genes bound by DAF‐16∷DAM, transcriptional regulation by DAF‐16 was not detected, perhaps reflecting transcriptionally non‐functional TF ‘parking sites’. This study demonstrates the efficacy of DamID for chromatin profiling in C. elegans.


Cell Death & Differentiation | 2002

Caspases are not localized in mitochondria during life or death

G van Loo; Xavier Saelens; Filip Matthijssens; Peter Schotte; Rudi Beyaert; Wim Declercq; Peter Vandenabeele

Caspases are crucial for the initiation, propagation and execution of apoptosis. They normally exist as proenzymes, which can be activated through recruitment into activating complexes and by proteolytic cleavage by other caspases or proteases. Perturbation of organelles such as nuclei, endoplasmatic reticulum and mitochondria results in the activation of caspases. A number of caspases (-2, -3, -8 and -9) were published as being localized in the intermembrane space of mitochondria. However, in three different models of apoptosis (anti-Fas-induced cell death in murine hepatocytes, Fas ligand-induced apoptosis in Jurkat cells and apoptosis induced by growth factor withdrawal in Ba/F3 cells) we could not identify a mitochondrial location of caspases, neither under control nor under apoptotic conditions. In all three apoptotic models caspases were found in the cytosolic (caspases-2, -3, -6, -7, -8, -9) and nuclear subcellular fractions (caspases-2, -3). In another approach we treated isolated liver mitochondria with truncated Bid. Although tBid-dependent release of Cytochrome c, AIF, adenylate kinase, Smac/DIABLO and Omi/HtrA2 could be demonstrated, none of the caspases were detectable both in the supernatant and the mitochondrial fraction after treatment. Our results demonstrate that, in contrast to previous studies, no caspases-2, -3, -8 and -9 are associated with the mitochondrial fraction. These findings support the concept of a separate compartmentalization between proapoptotic cofactors in the mitochondria and silent precursor caspases in the cytosol.


Free Radical Biology and Medicine | 2012

Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans.

Patricia Back; Winnok H. De Vos; Geert Depuydt; Filip Matthijssens; Jacques R. Vanfleteren; Bart P. Braeckman

Reactive oxygen species (ROS) are no longer considered merely toxic by-products of the oxidative metabolism. Tightly controlled concentrations of ROS and fluctuations in redox potential may be important mediators of signaling processes. Understanding the role of ROS and redox status in physiology, stress response, development, and aging requires their nondisruptive, spatiotemporal, real-time quantification in a living organism. We established Caenorhabditis elegans strains bearing the genetically encoded fluorescent biosensors HyPer and Grx1-roGFP2 for the detection of hydrogen peroxide (H(2)O(2)) and the glutathione redox potential, respectively. Although, given its transparency and genetic tractability, C. elegans is perfectly suitable as a model organism for such approaches, they have never been tried before in this nematode. We found that H(2)O(2) treatment clearly induces a dose-dependent, reversible response of both biosensors in the living worms. The ratio of oxidized to reduced glutathione decreases during postembryonic development. H(2)O(2) levels increase with age and this effect is delayed when life span is extended by dietary restriction. In young adults, we detected several regions with distinct redox properties that may be linked to their biological function. Our findings demonstrate that genetically encoded biosensors can reveal previously unknown details of in vivo redox biology in multicellular organisms.


Aging Cell | 2005

Metabolism, physiology and stress defense in three aging Ins/IGF‐1 mutants of the nematode Caenorhabditis elegans

Koen Houthoofd; Manuel A. Fidalgo; David Hoogewijs; Bart P. Braeckman; Isabelle Lenaerts; Kristel Brys; Filip Matthijssens; Annemie De Vreese; Sylvie Van Eygen; Manuel Muñoz; Jacques R. Vanfleteren

The insulin/insulin‐like growth factor‐1 (Ins/IGF‐1) pathway regulates the aging rate of the nematode Caenorhabditis elegans. We describe other features of the three Ins/IGF‐1 mutants daf‐2, age‐1 and aap‐1. We show that the investigated Ins/IGF‐1 mutants all have a reduced body volume, reduced reproductive capacity, increased ATP concentrations and an elevated stress resistance. We also observed that heat production is lower in these mutants, although the respiration rate was similar or higher compared with wild‐type individuals, suggesting a metabolic shift in these mutants.


BMC Biology | 2010

Disruption of insulin signalling preserves bioenergetic competence of mitochondria in ageing Caenorhabditis elegans.

Kristel Brys; Natascha Castelein; Filip Matthijssens; Jacques R. Vanfleteren; Bart P. Braeckman

BackgroundThe gene daf-2 encodes the single insulin/insulin growth factor-1-like receptor of Caenorhabditis elegans. The reduction-of-function allele e1370 induces several metabolic alterations and doubles lifespan.ResultsWe found that the e1370 mutation alters aerobic energy production substantially. In wild-type worms the abundance of key mitochondrial proteins declines with age, accompanied by a dramatic decrease in energy production, although the mitochondrial mass, inferred from the mitochondrial DNA copy number, remains unaltered. In contrast, the age-dependent decrease of both key mitochondrial proteins and bioenergetic competence is considerably attenuated in daf-2(e1370) adult animals. The increase in daf-2(e1370) mitochondrial competence is associated with a higher membrane potential and increased reactive oxygen species production, but with little damage to mitochondrial protein or DNA. Together these results point to a higher energetic efficiency of daf-2(e1370) animals.ConclusionsWe conclude that low daf-2 function alters the overall rate of ageing by a yet unidentified mechanism with an indirect protective effect on mitochondrial function.


Neurobiology of Aging | 2005

DAF-2 pathway mutations and food restriction in aging Caenorhabditis elegans differentially affect metabolism

Koen Houthoofd; Bart P. Braeckman; Isabelle Lenaerts; Kristel Brys; Filip Matthijssens; Annemie De Vreese; Sylvie Van Eygen; Jacques R. Vanfleteren

In Caenorhabditis elegans, metabolism and life expectancy respond to environmental cues of food availability and temperature. Several genes act in a neuroendocrine, DAF-2, insulin/IGF-1 receptor-like pathway in which reduced signaling affects metabolism and increases longevity. Here we describe the effect of reduced DAF-2 signaling on several parameters of metabolism including rates of oxygen consumption and heat output, the calorimetric/respirometric ratio, ATP levels, XTT reduction capacity and accumulation of lipofuscin. We also asked whether the DAF-2 signaling pathway mediates the metabolic and longevity effects of axenic culture medium. We show that both interventions act either antagonistically or in concert, depending on the parameter examined and that axenic culture medium, unlike DAF-2 signaling, does not need DAF-16 for generating these effects. In addition, we provide evidence that DAF-2 signaling controls mitochondrial bioenergetics by adjusting the rate of ATP synthesis to the rate of ATP utilization and by regulating the heat-producing proton leak pathway.

Collaboration


Dive into the Filip Matthijssens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Poppe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Benoit

Ghent University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge