Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacques Van Hoecke is active.

Publication


Featured researches published by Jacques Van Hoecke.


Medicine and Science in Sports and Exercise | 2000

Evidence of neuromuscular fatigue after prolonged cycling exercise.

Romuald Lepers; Christophe Hausswirth; Nicola A. Maffiuletti; Jeanick Brisswalter; Jacques Van Hoecke

PURPOSE The purpose of this study was to analyze the effects of prolonged cycling exercise on metabolic, neuromuscular, and biomechanical parameters. METHODS Eight well-trained male cyclists or triathletes performed a 2-h cycling exercise at a power output corresponding to 65% of their maximal aerobic power. Maximal concentric (CON; 60, 120, 240 degrees x s(-1)), isometric (ISO; 0 degrees s(-1)), and eccentric (ECC; -120, -60 degrees x s(-1)) contractions, electromyographic (EMG) activity of vastus lateralis (VL) and vastus medialis (VM) muscles were recorded before and after the exercise. Neural (M-wave) and contractile (isometric muscular twitch) parameters of quadriceps muscle were also analyzed using electrical stimulation techniques. RESULTS Oxygen uptake (VO2), minute ventilation (VE), and heart rate (HR) significantly increased (P < 0.01) during the 2-h by, respectively, 9.6%, 17.7%, and 12.7%, whereas pedaling rate significantly decreased (P < 0.01) by 21% (from 87 to 69 rpm). Reductions in muscular peak torque were quite similar during CON, ISO, and ECC contractions, ranging from 11 to 15%. M-wave duration significantly increased (P < 0.05) postexercise in both VL and VM, whereas maximal amplitude and total area decreased (VM: P < 0.05, VL: NS). Significant decreases in maximal twitch tension (P < 0.01), total area of mechanical response (P < 0.01), and maximal rate of twitch tension development (P < 0.05) were found postexercise. CONCLUSIONS A reduction in leg muscular capacity after prolonged cycling exercise resulted from both reduced neural input to the muscles and a failure of peripheral contractile mechanisms. Several hypothesis are proposed to explain a decrease in pedaling rate during the 2-h cycling with a constancy of power output and an increase in energy cost.


Experimental Gerontology | 2004

Changes in mechanical properties of human plantar flexor muscles in ageing.

Julien Ochala; Daniel Lambertz; Michel Pousson; Francis Goubel; Jacques Van Hoecke

Changes in contractile and elastic properties of human plantar flexor muscles in ageing, were investigated in 12 young (19-24 years, YG) and 11 old (61-74 year, OG) men. Maximal isometric and concentric voluntary torques, at several angular velocities, were measured to construct torque-angular velocity relationship. This led to the calculation of an index of maximal shorting velocity (VImax) at low torque. Two methods were then used to calculate musculotendinous (MT, quick-release movements) and musculoarticular (MA, sinusoidal perturbations) stiffness. In both cases, stiffness was linearly related to torque, leading to the calculation of a stiffness index (SI) as the slope of the stiffness-torque relationship: SI(MT) and SI(MA), respectively. MA stiffness under passive conditions (Kp) was also determined. Surface electromyograms were useful to control agonist and antagonist myoelectrical activities. As expected, maximal isometric (P<0.005) and concentric torques (P<0.05) as well as VImax(p<0.05) were lower in OG compared to YG. SI(MT) values were higher for OG compared to YG (P<0.05) leading to a mean difference of 55%, whereas SI(MA) and Kp were not significantly different between the two groups. Thus, older men were weaker and exhibited higher SI(MT) values. These impairments seem to be principally due to muscular atrophy and modifications in both muscle fibre-type distribution and fibre composition, in ageing. Invariance of SI(MA) and Kp would suggest an adaptive mechanism in articular structures to avoid the continuous integration of the ankle joint stiffness by the central nervous system, what may simplify most daily motor tasks.


Journal of Electromyography and Kinesiology | 1999

Isokinetic elbow flexion and coactivation following eccentric training

Serge Colson; Michel Pousson; Alain Martin; Jacques Van Hoecke

The influence of an eccentric training on torque/angular velocity relationships and coactivation level during maximal voluntary isokinetic elbow flexion was examined. Seventeen subjects divided into two groups (Eccentric Group EG, n = 9 Control Group CG, n = 8) performed on an isokinetic dynamometer, before and after training, maximal isokinetic elbow flexions at eight angular velocities (from - 120 degrees s(-1) under eccentric conditions to 240 degrees s(-1) under concentric conditions), and held maximal and submaximal isometric actions. Under all conditions, the myoelectric activities (EMG) of the biceps and the triceps brachii muscles were recorded and quantified as the RMS value. Eccentric training of the EG consisted of 5x6 eccentric muscle actions at 100 and 120% of one maximal repetition (IRM) for 21 sessions and lasted 7 weeks. In the EG after training, torque was significantly increased at all angular velocities tested (ranging from 11.4% at 30 degrees (s-1) to 45.5% at - 120 degrees s(-1)) (p < 0.05). These changes were accompanied by an increase in the RMS activities of the BB muscle under eccentric conditions (from - 120 to - 30 degrees (s-1)) and at the highest concentric angular velocities (180 and 24 degrees s(-1)) (p < 0.05). The RMS activity of the TB muscle was not affected by the angular velocity in either group for all action modes. The influence of eccentric training on the torque gains under eccentric conditions and for the highest velocities was attributed essentially to neural adaptations.


Aging Clinical and Experimental Research | 2007

Effects of a one-year exercise training program in adults over 70 years old: a study with a control group

Gaëlle Deley; Gaelle Kervio; Jacques Van Hoecke; Bénédicte Verges; Bruno Grassi; Jean-Marie Casillas

Background and aims: Exercise training is known to improve exercise tolerance in elderly subjects. Therefore the present study aimed at investigating the effects of one year of combined endurance and resistance training in healthy older people. Methods: After baseline evaluation, subjects were assigned to either the training group (n=24, age 77.2±3.6) or the control group (n=16, age 76.1±4.8). Subjects in the control group did not change anything in their everyday activities, whereas subjects in the training group underwent moderately intensive combined exercise training, 3 hours a week over the course of one year. Breath-by-breath oxygen uptake and heart rate were measured at each workload during the symptom-limited cardiopulmonary exercise test. Performance on the 6-minute (6-MWT) and 200-meter (200-MWT) walk tests was registered and maximal strength was measured on knee extensor and plantar flexor muscles. Results: After training, oxygen uptake was significantly increased, both at the ventilatory threshold (+11.6%, p<0.01) and at the end of exercise (+14.8%, p<0.001). The distance walked in 6 min (+10%, p<0.001), the time required to cover 200 m (−7.3%, p<0.001) and the maximal muscle strength (+15.2% and +17.4% for knee extensors and plantar flexors respectively, p<0.05) also improved after training. All these parameters had not significantly changed in the control group after the one-year period. Conclusions: The results of the present study show that one year of combined exercise training is well-tolerated and improves aerobic capacity, performance on field tests and muscle strength in healthy subjects over 70 years old.


European Journal of Applied Physiology | 2001

Time of day effects on isometric and isokinetic torque developed during elbow flexion in humans

Antoine Gauthier; Damien Davenne; Alain Martin; Jacques Van Hoecke

Abstract The aim of this study was, firstly, to confirm or refute the existence of circadian rhythms during several velocities of concentric action of the elbow flexor muscles and, secondly, to compare the characteristics of these circadian rhythms with those obtained during isometric actions. Eight volunteer subjects participated in this study. The circadian rhythms were obtained from six test sessions (TS) carried out at different times of day over 6 days with only one TS a day. During each TS, oral temperature and the torque of the muscle action were measured. The subjects made, on an isokinetic ergometer, two maximal isokinetic concentric elbow flexions at five angular velocities (60, 120, 180, 240 and 300° · s−1) and at an angle of 60°. Torque-angular velocity relationships, which characterised the functioning of the muscle during concentric and isometric actions, were established for the different times of day. The values of the torque recorded at each of the angular velocities presented a clear circadian rhythm. After normalisation of the torque values, no significant differences were observed among the computed characteristics of the circadian rhythms obtained at different angular velocities. Since the circadian rhythms during isometric and concentric torque were the same, the characteristics of the circadian rhythms of the musculo-skeletal system can be studied using either type of muscle action. The results indicated that torque and temperature varied concomitantly during the day. Thus, the recording of body temperature allows one to estimate the times of occurrence of maximal and minimal values in the circadian rhythm of muscle torque.


Medicine and Science in Sports and Exercise | 2002

Is eccentric exercise-induced torque decrease contraction type dependent?

Anne Michaut; Michel Pousson; Nicolas Babault; Jacques Van Hoecke

PURPOSE This study was designed to determine whether torque decrease following an acute eccentric exercise is contraction type dependent. METHODS Ten active males performed an exercise session consisting of five sets of ten maximal eccentric muscle actions of the elbow flexors. Before and immediately after the exercise, maximal voluntary eccentric (-60 degrees.s-1; Ecc60), isometric (0 degrees.s-1; Iso) and concentric (60 degrees.s-1; Con60 and 240 degrees.s-1; Con240) torque were measured. In order to distinguish central from peripheral factors involved in torque decrement, activation level (twitch interpolation technique), myoelectrical activity (RMS) of biceps brachii, as well as electrically evoked M-wave and peak twitch torque (Pt) were recorded. RESULTS The eccentric exercise induced a significant torque reduction (P < 0.01), whatever the muscular contraction type [mean (SD): -22.3 (8.1)% for Ecc60; -20.8 (11.2)% for Iso; -18.5 (6.1)% for Con60 and -12.5 (8.9)% for Con240]. Relative torque decrement was however significantly less for Con240 compared with Ecc60, Iso, and Con60 (P < 0.05). Torque decreases were associated with a reduction of both M-wave amplitude (P < 0.01) and Pt (P < 0.001), probably related to an impairment of the excitation-contraction coupling. Concurrently, activation level was reduced (P < 0.01), therefore indicating the occurrence of central fatigue, as also confirmed by RMS decreases for all the conditions (P < 0.05), except Con240. DISCUSSION An acute eccentric exercise induced a significant voluntary maximal torque reduction during eccentric, isometric, and concentric muscle actions ascribed to both peripheral and central failure of force production capacity. It can be concluded that eccentric exercise-induced torque decrease is not contraction type dependent.


Muscle & Nerve | 2010

Coactivation at the ankle joint is not sufficient to estimate agonist and antagonist mechanical contribution.

Maxime Billot; Emilie Simoneau; Jacques Van Hoecke; Alain Martin

The aim of this study was to assess, via an electromyographic (EMG) biofeedback method, the mechanical contribution of both agonist and antagonist muscles during maximal voluntary contraction (MVC). We compared this original method with the MVC–EMGmax ratio and the torque/EMG relationship method, both of which are commonly used to estimate antagonist torque. The plantarflexion (PF) and dorsiflexion (DF) MVCs were measured simultaneously with EMG activity of triceps surae (TS) and tibialis anterior in 15 young adults (mean age 23 years). Antagonist torques obtained from the torque/EMG relationship and EMG biofeedback methods appeared to be similar. TS antagonist torque had a major mechanical impact on DF MVC (∼42%). EMG coactivation is significantly different than normalized antagonist torque. TS antagonist torque is not negligible when maximal DF is assessed, and the EMG biofeedback method is a simple method to estimate antagonist torque. Muscle Nerve, 2010


Journal of Electromyography and Kinesiology | 2009

Antagonist mechanical contribution to resultant maximal torque at the ankle joint in young and older men

Emilie Simoneau; Maxime Billot; Alain Martin; Jacques Van Hoecke

A recorded muscular torque at one joint is a resultant torque corresponding to the participation of both agonist and antagonist muscles. This study aimed to examine the effect of aging on the mechanical contributions of both plantar- and dorsi-flexors to the resultant maximal voluntary contraction (MVC) torques exerted at the ankle joint, in dorsi-flexion (DF) and plantar-flexion (PF). The estimation of isometric agonist and antagonist torques by means of an EMG biofeedback technique was made with nine young (mean age 24 years) and nine older (mean age 80 years) men. While there was a non-significant age-related decline in the measured resultant DF MVC torque (-15%; p=0.06), there was a clear decrease in the estimated agonist MVC torque exerted by the dorsi-flexors (-39%; p=0.001). The DF-to-PF resultant MVC torque ratio was significantly lower in young than in older men (0.25 vs. 0.31; p=0.006), whereas the DF-to-PF agonist MVC torque ratio was no longer different between the two populations (0.38 vs. 0.35; p>0.05). Thus, agonist MVC torques in PF and DF would be similarly affected by aging, which could not be deduced when only resultant torques were examined.


Muscle & Nerve | 2006

Strength training in old age: Adaptation of antagonist muscles at the ankle joint

Emilie Simoneau; Alain Martin; Michelle M. Porter; Jacques Van Hoecke

The purpose of this study was to determine whether strength training could reduce the deficit in plantarflexion (PF) maximal voluntary contraction (MVC) torque observed in previous studies in older subjects relative to young adults. Accordingly, the effects of a 6‐month strength training program on the muscle and neural properties of the major muscle groups around the ankle were examined. PF and dorsiflexion (DF) isometric MVC torques were measured and surface electromyographic activity of the triceps surae and tibialis anterior muscles was recorded. The strength training program was very effective in improving strength in PF (+24.5%), and it thus reduced the DF‐to‐PF MVC torque ratio; in addition, it also induced gains in DF (+7.6%). Thus, there must be an improvement in ankle joint stability. In PF, gains were due particularly to a modification of the agonist neural drive; in DF, the gains appeared to be the consequence of a reduction in antagonist coactivation. Our findings indicate that the investigation of one muscle group should always be accompanied by examination of its antagonist muscle group. Muscle Nerve, 2005


Journal of Electromyography and Kinesiology | 2009

Effects of electromyostimulation versus voluntary isometric training on elbow flexor muscle strength

Serge S. Colson; Alain Martin; Jacques Van Hoecke

The purpose of this study was to determine whether 7 weeks of standardized (same number and duration of repetitions, sets and rest strictly identical) electromyostimulation training of the elbow flexor muscles would induce strength gains equivalent to those of voluntary isometric training in isometric, eccentric and concentric contractions. Twenty-five males were randomly assigned to an electromyostimulated group (EMS, n=9), a voluntary isometric group (VOL, n=8), or a control group (CON, n=8). Maximal voluntary isometric, eccentric and concentric strength, electromyographic (EMG) activity of the biceps and triceps brachii muscles, elbow flexor muscle activation (twitch interpolation technique) and contractile properties were assessed before and after the training period. The main findings were that the isometric torque gains of EMS were greater than those of VOL after the training period (P<0.01) and that the eccentric and concentric torque gains were equivalent. In both groups, we observed that the mechanical twitch (Pt) was increased (P<0.05) and that torque improvements were not mediated by neural adaptations. Considering the respective intensities of the training programs (i.e., submaximal contractions for EMS versus maximal for VOL), it can be concluded that electromyostimulation training would be more efficient than voluntary isometric training to improve both isometric and dynamic strength.

Collaboration


Dive into the Jacques Van Hoecke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Ballay

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilie Simoneau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Lambertz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge