Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae Bem You is active.

Publication


Featured researches published by Jae Bem You.


Lab on a Chip | 2013

A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices

Jae Bem You; Kyoung-Ik Min; Bora Lee; Dong-Pyo Kim; Sung Gap Im

Along with the expansion of microfluidics into many areas of applications such as sensors, microreactors and analytical tools, many other materials besides poly(dimethylsiloxane) (PDMS) have been suggested such as poly(imide) (PI) or poly(ethylene terephthalate) (PET). However, the sealing methods for these materials are not reliable in that many of the methods are specific to the substrate materials. Here, we report a novel robust doubly cross-linked nano-adhesive (DCNA) for bonding of various heterogeneous substrates. By depositing 200 nm of epoxy-containing polymer, poly(glycidyl methacrylate), via initiated chemical vapour deposition (iCVD) onto various substrates and cross-linking them with ethylenediamine, a strong adhesion was obtained between the substrates. This adhesive system was not only able to bond various difficult-to-bond substrates, such as PET or PI, but it could also preserve the complicated morphology of the surfaces owing to the thin nature of the DCNA system. The DCNA allowed fabrication of microfluidic devices using both rigid substrates, such as silicon wafer and glass, and flexible substrates, such as PDMS, PET and PI. The burst pressure of the devices sealed with DCNA exceeded 2.5 MPa, with a maximum burst pressure of 11.7 MPa. Furthermore, the adhesive system demonstrated an exceptional chemical and thermal resistance. The adhesion strength of the adhesive sandwiched between glass substrates remained the same even after a 10 day exposure to strong organic solvents such as toluene, acetone, and tetrahydrofuran (THF). Also, exposure to 200 °C for 15 h was not able to damage the adhesion strength. Using the high adhesive strength and flexibility of DCNA, flexible microfluidic devices that can be completely folded or rolled without any delamination during the operation were fabricated. The DCNA bonding is highly versatile in the sealing of microfluidic systems, and is compatible with a wide selection of materials, including flexible and foldable substrates, even upon sealing few-μm-sized channels.


ACS Applied Materials & Interfaces | 2014

Simple and Reliable Method to Incorporate the Janus Property onto Arbitrary Porous Substrates

Jae Bem You; Youngmin Yoo; Myung Seok Oh; Sung Gap Im

Economical fabrication of waterproof/breathable substrates has many potential applications such as clothing or improved medical dressing. In this work, a facile and reproducible fabrication method was developed to render the Janus property to arbitrary porous substrates. First, a hydrophobic surface was obtained by depositing a fluoropolymer, poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PHFDMA), on various porous substrates such as polyester fabric, nylon mesh, and filter paper. With a one-step vapor-phase deposition process, termed as initiated chemical vapor deposition (iCVD), a conformal coating of hydrophobic PHFDMA polymer film was achieved on both faces of the porous substrate. Since the hydrophobic perfluoroalkyl functionality is tethered on PHFDMA via hydrolyzable ester functionality, the hydrophobic functionality on PHFDMA was readily released by hydrolysis reaction. Here, by simply floating the PHFDMA-coated substrates on KOH(aq) solution, only the face of the PHFDMA-coated substrate in contact with the KOH(aq) solution became hydrophilic by the conversion of the fluoroalkyl ester group in the PHFDMA to hydrophilic carboxylic acid functionality. The hydrophilized face was able to easily absorb water, showing a contact angle of less than 37°. However, the top side of the PHFDMA-coated substrate was unaffected by the exposure to KOH(aq) solution and remained hydrophobic. Moreover, the carboxylated surface was further functionalized with aminated polystyrene beads. The porous Janus substrates fabricated using this method can be applied to various kinds of clothing such as pants and shirts, something that the lamination process for Gore-tex has not allowed.


Langmuir | 2014

A vapor-phase deposited polymer film to improve the adhesion of electroless-deposited copper layer onto various kinds of substrates.

Jae Bem You; Shin Young Kim; Yong Jin Park; Young Gwan Ko; Sung Gap Im

The adhesion of electrodeposited metal film to polymeric circuit board substrate is one of the key elements to successful miniaturization of electronic devices. However, as the size of the circuit pattern continuously decreases, a novel method is urgently required to increase the adhesion of the metal film on the substrate, especially on the smooth surface, which is critical to decrease the minimum feature size of the metal pattern. In this research, we developed an adhesion promoter layer by depositing metal chelating poly(4-vinylpyridine) (P4VP) film onto various organic and inorganic substrates via initiated chemical vapor deposition process (iCVD) to enhance the adhesion between the electroless deposited copper (Cu) layer and the substrate. The highest peel strength obtained between the electroless deposited Cu layer and P4VP coated substrate was 1.22 kgf/cm. Many advantageous characteristics of the adhesion promoter layer, including extreme thinness, the improved adhesion strength, conformal coverage, scalability of the deposition process, and short process time, will prompt the applicability of this adhesion promoter layer to industrial scale production.


Acta Biomaterialia | 2013

Initiated chemical vapor deposition of thermoresponsive poly (N-vinylcaprolactam) thin films for cell sheet engineering

Bora Lee; Alex Jiao; Seungjung Yu; Jae Bem You; Deok Ho Kim; Sung Gap Im

Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments.


Journal of the American Chemical Society | 2017

One-Step Synthesis of Cross-Linked Ionic Polymer Thin Films in Vapor Phase and Its Application to an Oil/Water Separation Membrane

Munkyu Joo; Jihye Shin; Jiyeon Kim; Jae Bem You; Youngmin Yoo; Moo Jin Kwak; Myung Seok Oh; Sung Gap Im

In spite of the huge research interest, ionic polymers could not have been synthesized in the vapor phase because the monomers of ionic polymers contain nonvolatile ionic salts, preventing the monomers from vaporization. Here, we suggest a new, one-step synthetic pathway to form a series of cross-linked ionic polymers (CIPs) in the vapor phase via initiated chemical vapor deposition (iCVD). 2-(Dimethylamino)ethyl methacrylate (DMAEMA) and 4-vinylbenzyl chloride (VBC) monomers are introduced into the iCVD reactor in the vapor phase to form a copolymer film. Simultaneously in the course of the deposition process, the tertiary amine in DMAEMA and benzylic chloride in VBC undergo a Menshutkin nucleophilic substitution reaction to form an ionic ammonium-chloride complex, forming a highly cross-linked ionic copolymer film of p(DMAEMA-co-VBC). To the best of our knowledge, this is the first report on the synthesis of CIP films in the vapor phase. The newly developed CIP thin film is further applied to the surface modification of the membrane for oil/water separation. With the hydrophilic and underwater oleophobic membrane whose surface is modified with the CIP film, excellent separation efficiency (>99%) and unprecedentedly high permeation flux (average 2.32 × 105 L m-2 h-1) are achieved.


ACS Applied Materials & Interfaces | 2016

Control of Reversible Self-Bending Behavior in Responsive Janus Microstrips

Myung Seok Oh; Young Shin Song; Cheolgyu Kim; Jongmin Kim; Jae Bem You; Taek-Soo Kim; Chang-Soo Lee; Sung Gap Im

Here, we demonstrate a simple method to systematically control the responsive self-bending behavior of Janus hydrogel microstrips consisting of a polymeric bilayer with a high modulus contrast. The Janus hydrogel microstrips could be easily fabricated by a simple micromolding technique combined with an initiated chemical vapor deposition (iCVD) coating, providing high flexibility in controlling the physical and chemical properties of the microstrips. The fabricated Janus hydrogel microstrip is composed of a soft, pH-responsive polymer hydrogel layer laminated with a highly cross-linked, rigid thin film, generating a geometric anisotropy at a micron scale. The large difference in the elastic moduli between the two layers of the Janus microstrips leads to a self-bending behavior in response to the pH change. More specifically, the impact of the physical and chemical properties of the microstrip on the self-bending phenomena was systematically investigated by changing the thickness and composition of two layers of the microstrip, which renders high controllability in bending of the microstrips. The curvature of the Janus microstrips, formed by self-bending, highly depends on the applied acidity. A reversible, responsive self-bending/unbending exhibits a perfect resilience pattern with repeated changes in pH for 5 cycles. We envision that the Janus microstrips can be engineered to form complex 3D microstructures applicable to various fields such as soft robotics, scaffolds, and drug delivery. The reliable responsive behaviors obtained from the systematic investigation will provide critical information in bridging the gap between the theoretical mechanical analysis and the chemical properties to achieve micron-scale soft robotics.


Advanced Healthcare Materials | 2015

Application of monodirectional Janus patch to oromucosal delivery system.

Jae Bem You; Ah Young Choi; Jieung Baek; Myung Seok Oh; Sung Gap Im; Kyung Eun Lee; Hye Sun Gwak

Drug delivery through mucosae has received huge research attention owing to its advantageous characteristics such as accurate dose control and the avoidance of premature metabolism of vulnerable drugs by oral administration. However, body fluid in mucosae may dissolve the drug, releasing it to unwanted directions. Here, a Janus drug delivery patch with monodirectional diffusion property is devised to deliver drugs efficiently and to overcome the issue of unwanted drug release. A polyester fabric is coated with a hydrophobic polymer, poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecafluorodecyl methacrylate), via initiated chemical vapor deposition. Subsequently, hydrophilicity is rendered selectively on one surface by base-catalyzed hydrolysis to obtain a Janus substrate with both hydrophobic and hydrophilic surfaces. The hydrophilic surface of the Janus substrate is further coated with resveratrol-loaded hydrogel to produce a Janus drug delivery patch. The fabricated patch efficiently blocks fluid penetration from one side to the other in mucous environment. Delivery of resveratrol through hairless mouse skin and reconstructed human mucosae using Janus patch shows higher permeation flux compared to bare control patch. The Janus drug delivery patch shown in this study can be a useful tool for efficient transmucosal delivery of various kinds of drugs.


ACS Applied Materials & Interfaces | 2017

Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry

Jihye Kim; Jae Bem You; Sung Min Nam; Sumin Seo; Sung Gap Im; Wonhee Lee

Flexible microfluidic system is an essential component of wearable biosensors to handle body fluids. A parylene-based, thin-film microfluidic system is developed to achieve flexible microfluidics with microscale bending radius. A new molding and bonding technique is developed for parylene microchannel fabrication. Bonding with nanoadhesive layers deposited by initiated chemical vapor deposition (iCVD) enables the construction of microfluidic channels with short fabrication time and high bonding strength. The high mechanical strength of parylene allows less channel deformation from the internal pressure for the thin-film parylene channel than bulk PDMS channel. At the same time, negligible channel sagging or collapse is observed during channel bending down to a few hundreds of micrometers due to stress relaxation by prestretch structure. The flexible parylene channels are also developed into a rollable microfluidic system. In a rollable microfluidics format, 2D parylene channels can be rolled around a capillary tubing working as inlets to minimize the device footprint. In addition, we show that creating reconfigurable 3D channel geometry with microscale bending radius can lead to tunable device function: tunable Dean-flow mixer is demonstrated using reconfigurable microscale 3D curved channel. Flexible parylene microfluidics with microscale bending radius is expected to provide an important breakthrough for many fields including wearable biosensors and tunable 3D microfluidics.


Advanced Healthcare Materials | 2016

A Highly Sensitive Molecular Detection Platform for Robust and Facile Diagnosis of Middle East Respiratory Syndrome (MERS) Corona Virus.

Il Young Jung; Jae Bem You; Bo Ram Choi; Ji Su Kim; Hyun Kyung Lee; Bora Jang; Han Saem Jeong; Kyuri Lee; Sung Gap Im; Hyukjin Lee

Trail polymerization enables a significant enhancement of the DhITACT system. DhITACT-Trail (DNA hydrogel formation by isothermal amplification of complementary targets trail polymerization) offers a robust diagnosis of target RNA strands in pseudo-serum specimen. This system requires minimum liquid handling as compared to conventional analysis. In addition, a definitive diagnostic result can be achieved within 30 min by an optical detection.


Food Chemistry | 2019

An efficient isolation of foodborne pathogen using surface-modified porous sponge

Yunho Choi; Yong Tae Kim; Jae Bem You; Sung Hee Jo; Seok Jae Lee; Sung Gap Im; Kyoung G. Lee

Rapid and efficient detection of pathogenic bacteria from food is critical to prevent epidemic food poisoning. However, the isolation of pathogenic bacteria from spoiled food is hampered by the lack of proper cell cultivation and/or isolation methods. Most of currently used methods suffer from complex, time-consuming culturing steps, low scalability, and high operation cost. Herein, we developed an alternative approach for the isolation of pathogenic bacteria directly from food using a surface-modified, highly porous sponge via initiated chemical vapor deposition (iCVD) process. A hydrophobic polymer, poly(2,4,6,8-tetravinyl-2,4,6,8-tetramethyl cyclotetra-siloxane) (pV4D4), was deposited conformally on amphiphilic 3-dimensional (3D) melamine sponge to incorporate hydrophobicity as well as oleophilicity to the porous sponge surface, which is appropriate for absorbing oil component selectively from food extracts. Furthermore, the surface-modified sponge was capable of the isolation of Escherichia coli O157:H7 (E. coli O157:H7) from heterogeneous mixture with oil/water/food particles with undistinguisible efficiency compare to artificial model system. The surface-modified sponge developed in this study will be a novel platform for oil/water separation and isolation of foodborne pathogens directly from heterogeneous mixture to enhance the efficiency of molecular diagnostics.

Collaboration


Dive into the Jae Bem You's collaboration.

Top Co-Authors

Avatar

Sung Gap Im

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sung Gap Im

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Pyo Kim

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge