Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae Cheol Jeong is active.

Publication


Featured researches published by Jae Cheol Jeong.


Plant Physiology | 2004

Pathogen- and NaCl-Induced Expression of the SCaM-4 Promoter Is Mediated in Part by a GT-1 Box That Interacts with a GT-1-Like Transcription Factor

Hyeong Cheol Park; Man Lyang Kim; Yun Hwan Kang; Joo Mi Jeon; Jae Hyuk Yoo; Min Chul Kim; Chan Young Park; Jae Cheol Jeong; Byeong Cheol Moon; Ju Huck Lee; Hae Won Yoon; Sung-Ho Lee; Woo Sik Chung; Chae Oh Lim; Sang Yeol Lee; Jong Chan Hong; Moo Je Cho

The Ca2+-binding protein calmodulin mediates cellular Ca2+ signals in response to a wide array of stimuli in higher eukaryotes. Plants express numerous CaM isoforms. Transcription of one soybean (Glycine max) CaM isoform, SCaM-4, is dramatically induced within 30 min of pathogen or NaCl stresses. To characterize the cis-acting element(s) of this gene, we isolated an approximately 2-kb promoter sequence of the gene. Deletion analysis of the promoter revealed that a 130-bp region located between nucleotide positions −858 and −728 is required for the stressors to induce expression of SCaM-4. A hexameric DNA sequence within this region, GAAAAA (GT-1 cis-element), was identified as a core cis-acting element for the induction of the SCaM-4 gene. The GT-1 cis-element interacts with an Arabidopsis GT-1-like transcription factor, AtGT-3b, in vitro and in a yeast selection system. Transcription of AtGT-3b is also rapidly induced within 30 min after pathogen and NaCl treatment. These results suggest that an interaction between a GT-1 cis-element and a GT-1-like transcription factor plays a role in pathogen- and salt-induced SCaM-4 gene expression in both soybean and Arabidopsis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance

Jianhua Zhu; Jae Cheol Jeong; Yanmei Zhu; Irina Sokolchik; Saori Miyazaki; Jian-Kang Zhu; Paul M. Hasegawa; Hans J. Bohnert; Huazhong Shi; Dae-Jin Yun; Ray A. Bressan

Histone modification in chromatin is one of the key control points in gene regulation in eukaryotic cells. Protein complexes composed of histone acetyltransferase or deacetylase, WD40 repeat protein, and many other components have been implicated in this process. Here, we report the identification and functional characterization of HOS15, a WD40-repeat protein crucial for repression of genes associated with abiotic stress tolerance through histone deacetylation in Arabidopsis. HOS15 shares high sequence similarity with human transducin-beta like protein (TBL), a component of a repressor protein complex involved in histone deacetylation. Mutation of the HOS15 gene renders mutant plants hypersensitive to freezing temperatures. HOS15 is localized in the nucleus and specifically interacts with histone H4. The level of acetylated histone H4 is higher in the hos15 mutant than in WT plants. Moreover, the stress inducible RD29A promoter is hyperinduced and associated with a substantially higher level of acetylated histone H4 in the hos15 mutant under cold stress conditions. Our results suggest a critical role for gene activation/repression by histone acetylation/deacetylation in plant acclimation and tolerance to cold stress.


The Plant Cell | 2012

A Vacuolar β-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis

Zheng-Yi Xu; Kwang Hee Lee; Ting Dong; Jae Cheol Jeong; Jing Bo Jin; Yuri Kanno; Dae Heon Kim; Soo Youn Kim; Mitsunori Seo; Ray A. Bressan; Dae-Jin Yun; Inhwan Hwang

This work presents evidence for a novel abscisic acid production pathway involving At-BG2, a β-glucosidase, in the vacuole. This result suggests that abscisic acid is produced in multiple places by multiple pathways in response to abiotic stress. The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses.


Plant Physiology | 2007

yucca6, a Dominant Mutation in Arabidopsis, Affects Auxin Accumulation and Auxin-Related Phenotypes

Jeong Im Kim; Altanbadralt Sharkhuu; Jing Bo Jin; Pinghua Li; Jae Cheol Jeong; Dongwon Baek; Sang Yeol Lee; Joshua J. Blakeslee; Angus S. Murphy; Hans J. Bohnert; Paul M. Hasegawa; Dae-Jin Yun; Ray A. Bressan

Auxin plays critical roles in many aspects of plant growth and development. Although a number of auxin biosynthetic pathways have been identified, their overlapping nature has prevented a clear elucidation of auxin biosynthesis. Recently, Arabidopsis (Arabidopsis thaliana) mutants with supernormal auxin phenotypes have been reported. These mutants exhibit hyperactivation of genes belonging to the YUCCA family, encoding putative flavin monooxygenase enzymes that result in increased endogenous auxin levels. Here, we report the discovery of fertile dominant Arabidopsis hypertall1-1D and hypertall1-2D (yucca6-1D, -2D) mutants that exhibit typical auxin overproduction phenotypic alterations, such as epinastic cotyledons, increased apical dominance, and curled leaves. However, unlike other auxin overproduction mutants, yucca6 plants do not display short or hairy root phenotypes and lack morphological changes under dark conditions. In addition, yucca6-1D and yucca6-2D have extremely tall (>1 m) inflorescences with extreme apical dominance and twisted cauline leaves. Microarray analyses revealed that expression of several indole-3-acetic acid-inducible genes, including Aux/IAA, SMALL AUXIN-UP RNA, and GH3, is severalfold higher in yucca6 mutants than in the wild type. Tryptophan (Trp) analog feeding experiments and catalytic activity assays with recombinant YUCCA6 indicate that YUCCA6 is involved in a Trp-dependent auxin biosynthesis pathway. YUCCA6:GREEN FLUORESCENT PROTEIN fusion protein indicates YUCCA6 protein exhibits a nonplastidial subcellular localization in an unidentified intracellular compartment. Taken together, our results identify YUCCA6 as a functional member of the YUCCA family with unique roles in growth and development.


Cell Death & Differentiation | 2006

AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants

Chang Ho Kang; W Y Jung; Yun Hwan Kang; Jin-Seog Kim; Donggiun Kim; Jae Cheol Jeong; Dongwon Baek; Jing Bo Jin; Ji-Young Lee; Myeong Ok Kim; Woosik Chung; Tesfaye Mengiste; Hisashi Koiwa; Sang-Soo Kwak; Jeong-Dong Bahk; Sung-Ho Lee; Jaesung Nam; Dae-Jin Yun; Moo-Je Cho

Calmodulin (CaM) influences many cellular processes by interacting with various proteins. Here, we isolated AtBAG6, an Arabidopsis CaM-binding protein that contains a central BCL-2-associated athanogene (BAG) domain. In yeast and plants, overexpression of AtBAG6 induced cell death phenotypes consistent with programmed cell death (PCD). Recombinant AtBAG6 had higher affinity for CaM in the absence of free Ca2 + than in its presence. An IQ motif (IQXXXRGXXXR, where X denotes any amino-acid) was required for Ca2 +-independent CaM complex formation and single amino-acid changes within this motif abrogated both AtBAG6-activated CaM-binding and cell death in yeast and plants. A 134-amino-acid stretch, encompassing both the IQ motif and BAG domain, was sufficient to induce cell death. Agents generating oxygen radicals, which are known to be involved in plant PCD, specifically induced the AtBAG6 transcript. Collectively, these results suggest that AtBAG6 is a stress-upregulated CaM-binding protein involved in plant PCD.


Plant Molecular Biology | 2004

Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes

Dongwon Baek; Jaesung Nam; Yoon Duck Koo; Doh Hoon Kim; Ji-Young Lee; Jae Cheol Jeong; Sang-Soo Kwak; Woo Sik Chung; Chae Oh Lim; Jeong Dong Bahk; Jong Chan Hong; Sang Yeol Lee; Maki Kawai-Yamada; Hirofumi Uchimiya; Dae-Jin Yun

An Arabidopsisprotoplast system was developed for dissecting plant cell death in individual cells. Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces apoptotic-like cell death in Arabidopsis. Bax accumulation in Arabidopsismesophyll protoplasts expressing murine BaxcDNA from a glucocorticoid-inducible promoter results in cytological characteristics of apoptosis, namely DNA fragmentation, increased vacuolation, and loss of plasma membrane integrity. In vivotargeting analysis monitored using jellyfish green fluorescent protein (GFP) reporter indicated full-length Bax was localized to the mitochondria, as it does in animal cells. Deletion of the carboxyl-terminal transmembrane domain of Bax completely abolished targeting to mitochondria. Bax expression was followed by reactive oxygen species (ROS) accumulation. Treatment of protoplasts with the antioxidant N-acetyl- -cysteine (NAC) during induction of Bax expression strongly suppressed Bax-mediated ROS production and the cell death phenotype. However, some population of the ROS depleted cells still induced cell death, indicating that there is a process that Bax-mediated plant cell death is independent of ROS accumulation. Accordingly, suppression of Bax-mediated plant cell death also takes place in two different processes. Over-expression of a key redox-regulator, Arabidopsisnucleoside diphosphate kinase 2 (AtNDPK2) down-regulated ROS accumulation and suppressed Bax-mediated cell death and transient expression of ArabidopsisBax inhibitor-1 (AtBI-1) substantially suppressed Bax-induced cell death without altering cellular ROS level. Taken together, our results collectively suggest that the Bax-mediated cell death and its suppression in plants is mediated by ROS-dependent and -independent processes.


Journal of Experimental Botany | 2010

A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

Francesco Orsini; Matilde Paino D'Urzo; Gunsu Inan; Sara Serra; Dong-Ha Oh; Michael V. Mickelbart; Federica Consiglio; Xia Li; Jae Cheol Jeong; Dae-Jin Yun; Hans J. Bohnert; Ray A. Bressan; Albino Maggio

Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research.


Molecules and Cells | 2009

Functional analysis of the stress-inducible soybean calmodulin isoform-4 (GmCaM-4) promoter in transgenic tobacco plants

Hyeong Cheol Park; Man Lyang Kim; Yun Hwan Kang; Jae Cheol Jeong; Mi Sun Cheong; Wonkyun Choi; Sang Yeol Lee; Moo Je Cho; Min Chul Kim; Woo Sik Chung; Dae-Jin Yun

The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between −1,207 and −1,128 bp, and between −858 and −728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.


Scientific Reports | 2016

Orange protein has a role in phytoene synthase stabilization in sweetpotato.

Seyeon Park; Ho Soo Kim; Young Jun Jung; Sun Ha Kim; Chang Yoon Ji; Zhi Wang; Jae Cheol Jeong; Haeng-Soon Lee; Sang Yeol Lee; Sang-Soo Kwak

Carotenoids have essential roles in light-harvesting processes and protecting the photosynthetic machinery from photo-oxidative damage. Phytoene synthase (PSY) and Orange (Or) are key plant proteins for carotenoid biosynthesis and accumulation. We previously isolated the sweetpotato (Ipomoea batatas) Or gene (IbOr), which is involved in carotenoid accumulation and salt stress tolerance. The molecular mechanism underlying IbOr regulation of carotenoid accumulation was unknown. Here, we show that IbOr has an essential role in regulating IbPSY stability via its holdase chaperone activity both in vitro and in vivo. This protection results in carotenoid accumulation and abiotic stress tolerance. IbOr transcript levels increase in sweetpotato stem, root, and calli after exposure to heat stress. IbOr is localized in the nucleus and chloroplasts, but interacts with IbPSY only in chloroplasts. After exposure to heat stress, IbOr predominantly localizes in chloroplasts. IbOr overexpression in transgenic sweetpotato and Arabidopsis conferred enhanced tolerance to heat and oxidative stress. These results indicate that IbOr holdase chaperone activity protects IbPSY stability, which leads to carotenoid accumulation, and confers enhanced heat and oxidative stress tolerance in plants. This study provides evidence that IbOr functions as a molecular chaperone, and suggests a novel mechanism regulating carotenoid accumulation and stress tolerance in plants.


Physiologia Plantarum | 2013

Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.

Hyosub Chu; Jae Cheol Jeong; Wook-Jin Kim; Dong Min Chung; Hyo Kon Jeon; Young Ock Ahn; Sun Ha Kim; Haeng-Soon Lee; Sang-Soo Kwak; Cha Young Kim

R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants.

Collaboration


Dive into the Jae Cheol Jeong's collaboration.

Top Co-Authors

Avatar

Dae-Jin Yun

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sang-Soo Kwak

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Sun Ha Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Sang Soo Kwak

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Sang Yeol Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Dongwon Baek

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Haeng Soon Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Haeng-Soon Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyeong Cheol Park

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge