Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongwon Baek is active.

Publication


Featured researches published by Dongwon Baek.


Plant Physiology | 2007

yucca6, a Dominant Mutation in Arabidopsis, Affects Auxin Accumulation and Auxin-Related Phenotypes

Jeong Im Kim; Altanbadralt Sharkhuu; Jing Bo Jin; Pinghua Li; Jae Cheol Jeong; Dongwon Baek; Sang Yeol Lee; Joshua J. Blakeslee; Angus S. Murphy; Hans J. Bohnert; Paul M. Hasegawa; Dae-Jin Yun; Ray A. Bressan

Auxin plays critical roles in many aspects of plant growth and development. Although a number of auxin biosynthetic pathways have been identified, their overlapping nature has prevented a clear elucidation of auxin biosynthesis. Recently, Arabidopsis (Arabidopsis thaliana) mutants with supernormal auxin phenotypes have been reported. These mutants exhibit hyperactivation of genes belonging to the YUCCA family, encoding putative flavin monooxygenase enzymes that result in increased endogenous auxin levels. Here, we report the discovery of fertile dominant Arabidopsis hypertall1-1D and hypertall1-2D (yucca6-1D, -2D) mutants that exhibit typical auxin overproduction phenotypic alterations, such as epinastic cotyledons, increased apical dominance, and curled leaves. However, unlike other auxin overproduction mutants, yucca6 plants do not display short or hairy root phenotypes and lack morphological changes under dark conditions. In addition, yucca6-1D and yucca6-2D have extremely tall (>1 m) inflorescences with extreme apical dominance and twisted cauline leaves. Microarray analyses revealed that expression of several indole-3-acetic acid-inducible genes, including Aux/IAA, SMALL AUXIN-UP RNA, and GH3, is severalfold higher in yucca6 mutants than in the wild type. Tryptophan (Trp) analog feeding experiments and catalytic activity assays with recombinant YUCCA6 indicate that YUCCA6 is involved in a Trp-dependent auxin biosynthesis pathway. YUCCA6:GREEN FLUORESCENT PROTEIN fusion protein indicates YUCCA6 protein exhibits a nonplastidial subcellular localization in an unidentified intracellular compartment. Taken together, our results identify YUCCA6 as a functional member of the YUCCA family with unique roles in growth and development.


Journal of Experimental Botany | 2011

YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

Jeong Im Kim; Angus S. Murphy; Dongwon Baek; Shin-Woo Lee; Dae-Jin Yun; Ray A. Bressan; Meena L. Narasimhan

The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes.


Plant Physiology | 2011

Expression of StMYB1R-1, a Novel Potato Single MYB-like domain Transcription Factor, Increases Drought Tolerance

Dongjin Shin; Seok-Jun Moon; Se-Youn Han; Beom-Gi Kim; Sang Ryeol Park; Seong-Kon Lee; Hye-Jin Yoon; Hye Eun Lee; Hawk-Bin Kwon; Dongwon Baek; Bu Young Yi; Myung-Ok Byun

Potato (Solanum tuberosum) is relatively vulnerable to abiotic stress conditions such as drought, but the tolerance mechanisms for such stresses in potato are largely unknown. To identify stress-related factors in potato, we previously carried out a genetic screen of potato plants exposed to abiotic environmental stress conditions using reverse northern-blot analysis. A cDNA encoding a putative R1-type MYB-like transcription factor (StMYB1R-1) was identified as a putative stress-response gene. Here, the transcript levels of StMYB1R-1 were enhanced in response to several environmental stresses in addition to drought but were unaffected by biotic stresses. The results of intracellular targeting and quadruple 9-mer protein-binding microarray analysis indicated that StMYB1R-1 localizes to the nucleus and binds to the DNA sequence G/AGATAA. Overexpression of a StMYB1R-1 transgene in potato plants improved plant tolerance to drought stress while having no significant effects on other agricultural traits. Transgenic plants exhibited reduced rates of water loss and more rapid stomatal closing than wild-type plants under drought stress conditions. In addition, overexpression of StMYB1R-1 enhanced the expression of drought-regulated genes such as AtHB-7, RD28, ALDH22a1, and ERD1-like. Thus, the expression of StMYB1R-1 in potato enhanced drought tolerance via regulation of water loss. These results indicated that StMYB1R-1 functions as a transcription factor involved in the activation of drought-related genes.


Cell Death & Differentiation | 2006

AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants

Chang Ho Kang; W Y Jung; Yun Hwan Kang; Jin-Seog Kim; Donggiun Kim; Jae Cheol Jeong; Dongwon Baek; Jing Bo Jin; Ji-Young Lee; Myeong Ok Kim; Woosik Chung; Tesfaye Mengiste; Hisashi Koiwa; Sang-Soo Kwak; Jeong-Dong Bahk; Sung-Ho Lee; Jaesung Nam; Dae-Jin Yun; Moo-Je Cho

Calmodulin (CaM) influences many cellular processes by interacting with various proteins. Here, we isolated AtBAG6, an Arabidopsis CaM-binding protein that contains a central BCL-2-associated athanogene (BAG) domain. In yeast and plants, overexpression of AtBAG6 induced cell death phenotypes consistent with programmed cell death (PCD). Recombinant AtBAG6 had higher affinity for CaM in the absence of free Ca2 + than in its presence. An IQ motif (IQXXXRGXXXR, where X denotes any amino-acid) was required for Ca2 +-independent CaM complex formation and single amino-acid changes within this motif abrogated both AtBAG6-activated CaM-binding and cell death in yeast and plants. A 134-amino-acid stretch, encompassing both the IQ motif and BAG domain, was sufficient to induce cell death. Agents generating oxygen radicals, which are known to be involved in plant PCD, specifically induced the AtBAG6 transcript. Collectively, these results suggest that AtBAG6 is a stress-upregulated CaM-binding protein involved in plant PCD.


Plant Molecular Biology | 2004

Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes

Dongwon Baek; Jaesung Nam; Yoon Duck Koo; Doh Hoon Kim; Ji-Young Lee; Jae Cheol Jeong; Sang-Soo Kwak; Woo Sik Chung; Chae Oh Lim; Jeong Dong Bahk; Jong Chan Hong; Sang Yeol Lee; Maki Kawai-Yamada; Hirofumi Uchimiya; Dae-Jin Yun

An Arabidopsisprotoplast system was developed for dissecting plant cell death in individual cells. Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces apoptotic-like cell death in Arabidopsis. Bax accumulation in Arabidopsismesophyll protoplasts expressing murine BaxcDNA from a glucocorticoid-inducible promoter results in cytological characteristics of apoptosis, namely DNA fragmentation, increased vacuolation, and loss of plasma membrane integrity. In vivotargeting analysis monitored using jellyfish green fluorescent protein (GFP) reporter indicated full-length Bax was localized to the mitochondria, as it does in animal cells. Deletion of the carboxyl-terminal transmembrane domain of Bax completely abolished targeting to mitochondria. Bax expression was followed by reactive oxygen species (ROS) accumulation. Treatment of protoplasts with the antioxidant N-acetyl- -cysteine (NAC) during induction of Bax expression strongly suppressed Bax-mediated ROS production and the cell death phenotype. However, some population of the ROS depleted cells still induced cell death, indicating that there is a process that Bax-mediated plant cell death is independent of ROS accumulation. Accordingly, suppression of Bax-mediated plant cell death also takes place in two different processes. Over-expression of a key redox-regulator, Arabidopsisnucleoside diphosphate kinase 2 (AtNDPK2) down-regulated ROS accumulation and suppressed Bax-mediated cell death and transient expression of ArabidopsisBax inhibitor-1 (AtBI-1) substantially suppressed Bax-induced cell death without altering cellular ROS level. Taken together, our results collectively suggest that the Bax-mediated cell death and its suppression in plants is mediated by ROS-dependent and -independent processes.


Molecular Plant | 2013

Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit

Jeong Im Kim; Dongwon Baek; Hyeong Cheol Park; Hyun Jin Chun; Dong-Ha Oh; Min Kyung Lee; Joon-Yung Cha; Woe-Yeon Kim; Min Chul Kim; Woo Sik Chung; Hans J. Bohnert; Sang Yeol Lee; Ray A. Bressan; Shin-Woo Lee; Dae-Jin Yun

Indole-3-acetic acid (IAA), a major plant auxin, is produced in both tryptophan-dependent and tryptophan-independent pathways. A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan. Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins. We identified eight putative StYUC (Solanum tuberosum YUCCA) genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins. All include canonical, conserved YUCCA sequences: FATGY motif, FMO signature sequence, and FAD-binding and NADP-binding sequences. In addition, five genes were found with ~50% amino acid sequence identity to Arabidopsis tryptophan aminotransferases. Transgenic potato (Solanum tuberosum cv. Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves, increased height, erect stature, and longevity. Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss. The phenotype was correlated with reduced levels of reactive oxygen species in leaves. The results suggest a functional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment.


Plant Physiology | 2013

Regulation of miR399f Transcription by AtMYB2 Affects Phosphate Starvation Responses in Arabidopsis

Dongwon Baek; Min Chul Kim; Hyun Jin Chun; S.G. Kang; Hyeong Cheol Park; Gilok Shin; Ji-Young Park; Mingzhe Shen; Hyewon Hong; Woe-Yeon Kim; Doh Hoon Kim; Sang Yeol Lee; Ray A. Bressan; Hans J. Bohnert; Dae-Jin Yun

Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants constitutively overexpressing AtMYB2 showed increased miR399f expression and tissue Pi contents under high Pi growth and exhibited elevated expression of a subset of Pi starvation-induced genes. Pi starvation-induced root architectural changes were more exaggerated in AtMYB2-overexpressing transgenic plants compared with the wild type. AtMYB2 directly binds to a MYB-binding site in the miR399f promoter in vitro, as well as in vivo, and stimulates miR399f promoter activity in Arabidopsis protoplasts. Transcription of AtMYB2 itself is induced in response to Pi deficiency, and the tissue expression patterns of miR399f and AtMYB2 are similar. Both genes are expressed mainly in vascular tissues of cotyledons and in roots. Our results suggest that AtMYB2 regulates plant responses to Pi starvation by regulating the expression of the miR399 gene.


Plant Cell and Environment | 2010

Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice

Hyeongcheol Park; Hun Kim; Sungcheol Koo; Heejin Park; Misun Cheong; Hyewon Hong; Dongwon Baek; Woosik Chung; Dohhoon Kim; Ray A. Bressan; Sang-Yeol Lee; Hans J. Bohnert; Dae-Jin Yun

Sumoylation is a post-translational regulatory process in diverse cellular processes in eukaryotes, involving conjugation/deconjugation of small ubiquitin-like modifier (SUMO) proteins to other proteins thus modifying their function. The PIAS [protein inhibitor of activated signal transducers and activators of transcription (STAT)] and SAP (scaffold attachment factor A/B/acinus/PIAS)/MIZ (SIZ) proteins exhibit SUMO E3-ligase activity that facilitates the conjugation of SUMO proteins to target substrates. Here, we report the isolation and molecular characterization of Oryza sativa SIZ1 (OsSIZ1) and SIZ2 (OsSIZ2), rice homologs of Arabidopsis SIZ1. The rice SIZ proteins are localized to the nucleus and showed sumoylation activities in a tobacco system. Our analysis showed increased amounts of SUMO conjugates associated with environmental stresses such as high and low temperature, NaCl and abscisic acid (ABA) in rice plants. The expression of OsSIZ1 and OsSIZ2 in siz1-2 Arabidopsis plants partially complemented the morphological mutant phenotype and enhanced levels of SUMO conjugates under heat shock conditions. In addition, ABA-hypersensitivity of siz1-2 seed germination was partially suppressed by OsSIZ1 and OsSIZ2. The results suggest that rice SIZ1 and SIZ2 are able to functionally complement Arabidopsis SIZ1 in the SUMO conjugation pathway. Their effects on the Arabidopsis mutant suggest a function for these genes related to stress responses and stress adaptation.


Molecules and Cells | 2012

Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens

Hyun Jin Chun; Hyeong Cheol Park; Sung Cheol Koo; Ju Huck Lee; Chan Young Park; Man Soo Choi; Chang Ho Kang; Dongwon Baek; Yong Hwa Cheong; Dae-Jin Yun; Woo Sik Chung; Moo Je Cho; Min Chul Kim

Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H2O2, with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance.


Nature Communications | 2015

A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis

Joon-Yung Cha; Woe-Yeon Kim; Sun Bin Kang; Jeong Im Kim; Dongwon Baek; In Jung Jung; Mi Ri Kim; Ning Li; Hyunjin Kim; Masatoshi Nakajima; Tadao Asami; Jamal S. M. Sabir; Hyeong Cheol Park; Sang Yeol Lee; Hans J. Bohnert; Ray A. Bressan; José M. Pardo; Dae-Jin Yun

YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses.

Collaboration


Dive into the Dongwon Baek's collaboration.

Top Co-Authors

Avatar

Dae-Jin Yun

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sang Yeol Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Hyeong Cheol Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-Young Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Min Chul Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Dongjin Shin

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Hyun Jin Chun

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Jae Cheol Jeong

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge