Jae Man Shin
KAIST
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jae Man Shin.
Journal of the American Chemical Society | 2014
Kang Hee Ku; Jae Man Shin; Min-Soo Kim; Chun-Ho Lee; Min-Kyo Seo; Gi-Ra Yi; Se Gyu Jang; Bumjoon J. Kim
The tuning of interfacial properties at selective and desired locations on the particles is of great importance to create the novel structured particles by breaking the symmetry of their surface property. Herein, a dramatic transition of both the external shape and internal morphology of the particles of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) was induced by precise positioning of size-controlled Au nanoparticle surfactants (Au NPs). The size-dependent assembly of the Au NPs was localized preferentially at the interface between the P4VP domain at the particle surface and the surrounding water, which generated a balanced interfacial interaction between two different PS/P4VP domains of the BCP particles and water, producing unique convex lens-shaped BCP particles. In addition, the neutralized interfacial interaction, in combination with the directionality of the solvent-induced ordering of the BCP domains from the interface of the particle/water, generated defect-free, vertically ordered porous channels within the particles. The mechanism for the formation of these novel nanostructures was investigated systemically by varying the size and the volume fraction of the Au NPs. Furthermore, these convex lens-shaped particles with highly ordered channels can be used as a microlens, in which the light can be concentrated toward the focal point with enhanced near-field signals. And, these particles can possess additional optical properties such as unique distribution of light scattering as a result of the well-ordered Au cylinders that filled into the channels, which hold great promise for use in optical, biological-sensing, and imaging applications.
Small | 2013
Kang Hee Ku; Min-Soo Kim; Kwanyeol Paek; Jae Man Shin; Sunhaeng Chung; Se Gyu Jang; Weon-Sik Chae; Gi-Ra Yi; Bumjoon J. Kim
Multicolor or white light-emitting systems have attracted great attention because of their potential uses as lighting sources and full-color displays. [ 1 ] In recent years, numerous efforts have been devoted to the development of low-cost, simple processes for the fabrication of pure white-light sources as an alternative for conventional lighting sources. [ 2–4 ] Fluorescent quantum dots (QDs) have been explored as one of the promising candidate materials due to their pure color emission spectra, high fl uorescence quantum yield, and photochemical stability. [ 5 , 6 ] However, the emission spectrum produced by each individual QD is narrow, thus requiring simultaneous emission from more than two colored QDs to illuminate across the visible regime. Typically, this is achieved through a combination of either three different QDs emitting red, green and blue light or two different ones emitting orange/red and green/blue light. In such a system, undesired Förster resonance energy transfer (FRET) between QDs often occurs, decreasing the effi ciency of the white light emission. [ 7 , 8 ] The controlled spatial isolation of multiple QDs is made necessary by the strong dependence of the energy-transfer process on the donor-acceptor distance on the nanometer scale. [ 9 , 10 ]
ACS Nano | 2017
Jae Man Shin; YongJoo Kim; Hongseok Yun; Gi-Ra Yi; Bumjoon J. Kim
Shape and morphology of polymeric particles are of great importance in controlling their optical properties or self-assembly into unusual superstructures. Confinement of block copolymers (BCPs) in evaporative emulsions affords particles with diverse structures, including prolate ellipsoids, onion-like spheres, oblate ellipsoids, and others. Herein, we report that the evaporation rate of solvent from emulsions encapsulating symmetric polystyrene-b-polybutadiene (PS-b-PB) determines the shape and internal nanostructure of micron-sized BCP particles. A distinct morphological transition from the ellipsoids with striped lamellae to the onion-like spheres was observed with decreasing evaporation rate. Experiments and dissipative particle dynamics (DPD) simulations showed that the evaporation rate affected the organization of BCPs at the particle surface, which determined the final shape and internal nanostructure of the particles. Differences in the solvent diffusion rates in PS and PB at rapid evaporation rates induced alignment of both domains perpendicular to the particle surface, resulting in ellipsoids with axial lamellar stripes. Slower evaporation rates provided sufficient time for BCP organization into onion-like structures with PB as the outermost layer, owing to the preferential interaction of PB with the surroundings. BCP molecular weight was found to influence the critical evaporation rate corresponding to the morphological transition from ellipsoid to onion-like particles, as well as the ellipsoid aspect ratio. DPD simulations produced morphologies similar to those obtained from experiments and thus elucidated the mechanism and driving forces responsible for the evaporation-induced assembly of BCPs into particles with well-defined shapes and morphologies.
ACS Nano | 2016
Kang Hee Ku; Jae Man Shin; Daniel Klinger; Se Gyu Jang; Ryan C. Hayward; Craig J. Hawker; Bumjoon J. Kim
A series of porous block copolymer (BCP) particles with controllable morphology and pore sizes was fabricated by tuning the interfacial behavior of BCP droplets in oil-in-water emulsions. A synergistic adsorption of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) BCPs and sodium dodecyl sulfate (SDS) to the surface of the emulsion droplet induced a dramatic decrease in the interfacial tension and generated interfacial instability at the particle surface. In particular, the SDS concentration and the P4VP volume fraction of PS-b-P4VP were key parameters in determining the degree of interfacial instability, leading to different types of particles including micelles, capsules, closed-porosity particles, and open-porosity particles with tunable pore sizes ranging from 10 to 500 nm. The particles with open-porosity could be used as pH-responsive, high capacity delivery systems where the uptake and release of multiple dyes could be achieved.
Advanced Materials | 2017
Junhyuk Lee; Kang Hee Ku; Mingoo Kim; Jae Man Shin; Junghun Han; Chan Ho Park; Gi-Ra Yi; Se Gyu Jang; Bumjoon J. Kim
Development of particles that change shape in response to external stimuli has been a long-thought goal for producing bioinspired, smart materials. Herein, the temperature-driven transformation of the shape and morphology of polymer particles composed of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers (BCPs) and temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) surfactants is reported. PNIPAM acts as a temperature-responsive surfactant with two important roles. First, PNIPAM stabilizes oil-in-water droplets as a P4VP-selective surfactant, creating a nearly neutral interface between the PS and P4VP domains together with cetyltrimethylammonium bromide, a PS-selective surfactant, to form anisotropic PS-b-P4VP particles (i.e., convex lenses and ellipsoids). More importantly, the temperature-directed positioning of PNIPAM depending on its solubility determines the overall particle shape. Ellipsoidal particles are produced above the critical temperature, whereas convex lens-shaped particles are obtained below the critical temperature. Interestingly, given that the temperature at which particle shape change occurs depends solely on the lower critical solution temperature (LCST) of the polymer surfactants, facile tuning of the transition temperature is realized by employing other PNIPAM derivatives with different LCSTs. Furthermore, reversible transformations between different shapes of PS-b-P4VP particles are successfully demonstrated using a solvent-adsorption annealing with chloroform, suggesting great promise of these particles for sensing, smart coating, and drug delivery applications.
Chemistry of Materials | 2016
Hyunseung Yang; Kang Hee Ku; Jae Man Shin; Junhyuk Lee; Chan Ho Park; Han-Hee Cho; Se Gyu Jang; Bumjoon J. Kim
Journal of Polymer Science Part A | 2015
Kang Hee Ku; Hyunseung Yang; Jae Man Shin; Bumjoon J. Kim
Chemistry of Materials | 2015
Jae Man Shin; Min-Soo Kim; Hyunseung Yang; Kang Hee Ku; Se Gyu Jang; Kyung Ho Youm; Gi-Ra Yi; Bumjoon J. Kim
Macromolecules | 2015
Wonho Lee; Jin-Seong Kim; Hyeong Jun Kim; Jae Man Shin; Kang Hee Ku; Hyunseung Yang; Junhyuk Lee; Jung Gun Bae; Won Bo Lee; Bumjoon J. Kim
Advanced Materials | 2017
Junhyuk Lee; Kang Hee Ku; Mingoo Kim; Jae Man Shin; Junghun Han; Chan Ho Park; Gi-Ra Yi; Se Gyu Jang; Bumjoon J. Kim