Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jae Min Choi is active.

Publication


Featured researches published by Jae Min Choi.


Genetics | 2014

NsdD Is a Key Repressor of Asexual Development in Aspergillus nidulans

Mi-Kyung Lee; Nak-Jung Kwon; Jae Min Choi; Im-Soon Lee; Seunho Jung; Jae-Hyuk Yu

Asexual development (conidiation) of the filamentous fungus Aspergillus nidulans occurs via balanced activities of multiple positive and negative regulators. For instance, FluG (+) and SfgA (−) govern upstream regulation of the developmental switch, and BrlA (+) and VosA (−) control the progression and completion of conidiation. To identify negative regulators of conidiation downstream of FluG-SfgA, we carried out multicopy genetic screens using sfgA deletion strains. After visually screening >100,000 colonies, we isolated 61 transformants exhibiting reduced conidiation. Responsible genes were identified as AN3152 (nsdD), AN7507, AN2009, AN1652, AN5833, and AN9141. Importantly, nsdD, a key activator of sexual reproduction, was present in 10 independent transformants. Furthermore, deletion, overexpression, and double-mutant analyses of individual genes have led to the conclusion that, of the six genes, only nsdD functions in the FluG-activated conidiation pathway. The deletion of nsdD bypassed the need for fluG and flbA∼flbE, but not brlA or abaA, in conidiation, and partially restored production of the mycotoxin sterigmatocystin (ST) in the ΔfluG, ΔflbA, and ΔflbB mutants, suggesting that NsdD is positioned between FLBs and BrlA in A. nidulans. Nullifying nsdD caused formation of conidiophores in liquid submerged cultures, where wild-type strains do not develop. Moreover, the removal of both nsdD and vosA resulted in even more abundant development of conidiophores in liquid submerged cultures and high-level accumulation of brlA messenger (m)RNA even at 16 hr of vegetative growth. Collectively, NsdD is a key negative regulator of conidiation and likely exerts its repressive role via downregulating brlA.


Carbohydrate Polymers | 2015

Novel magnetic nanoparticles coated by benzene- and β-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon.

Eunae Cho; Muhammad Nazir Tahir; Jae Min Choi; Hwanhee Kim; Jae-Hyuk Yu; Seunho Jung

We present the synthesis of novel magnetic nanoparticles functionalized by benzene- and β-cyclodextrin-derivatized dextran. The grafting strategy was based on the [alkynyl-iron] cluster in the modified dextrans, which were prepared by click reaction from alkyne-modified dextran and benzyl azide or mono-6-O-deoxy-monoazido β-cyclodextrin. Characterization was then carried out by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. Using the developed magnetic nanoparticles, the potential for removing polycyclic aromatic hydrocarbons such as phenanthrene and pyrene by sorption onto the nanomaterials was assessed. In the sorption, pi-stacking interactions of the benzene-derivatized dextran and host-guest chemistry of the β-cyclodextrin-derivatized dextran were considered to be significant. Furthermore, the polysaccharide derivative-coated magnetic adsorbents could be recovered by an external magnet for reuse.


Carbohydrate Polymers | 2017

Solubility and bioavailability enhancement of ciprofloxacin by induced oval-shaped mono-6-deoxy-6-aminoethylamino-β-cyclodextrin

Jae Min Choi; Kyeonghui Park; Benel Lee; Daham Jeong; Someshwar D. Dindulkar; Youngjin Choi; Eunae Cho; Seyeon Park; Jae-Hyuk Yu; Seunho Jung

Ciprofloxacin is a broad-spectrum fluoroquinolone antibiotic used to treat bacterial infections; however, its limited aqueous solubility inhibits its broader clinical uses. This study investigated the complexation effect of mono-6-deoxy-6-aminoethylamino-β-cyclodextrin on the aqueous solubility and bioavailability of ciprofloxacin. During complexation, the oval-shaped cavity induced by mono-aminoethylamine substitution on the primary rim of β-cyclodextrin, was considered to be a key factor according to NMR spectroscopy and molecular modeling studies. The ciprofloxacin with mono-6-deoxy-6-aminoethylamino-β-cyclodextrin complex was characterized using FE-SEM, DSC, FT-IR, T1 relaxation, 2D NOESY, and DOSY NMR spectroscopy and molecular modeling studies. The solubility property of ciprofloxacin complexed with mono-6-deoxy-6-aminoethylamino-β-cyclodextrin was enhanced by seven-fold compared to that of pure ciprofloxacin. Furthermore antibacterial activity of that complex against methicillin-resistant Staphylococcus aureus was enhanced and it clearly showed the growth inhibition. The mono-6-deoxy-6-aminoethylamino-β-cyclodextrin has the potential to be utilized for other oblong guest molecules besides ciprofloxacin based on the novel induced elliptical cavity.


Carbohydrate Polymers | 2014

Intermolecular complexation of low-molecular-weight succinoglycans directs solubility enhancement of pindolol

Kyoungtea Kim; Eunae Cho; Jae Min Choi; Hwanhee Kim; Ahri Jang; Youngjin Choi; Im Soon Lee; Jae-Hyuk Yu; Seunho Jung

The low-molecular-weight succinoglycans isolated from Sinorhizobium meliloti are repeating octasaccharide units consisting of monomers, dimers, and trimers. Pindolol is a beta-blocker used to treat cardiovascular disorders. We investigated the formation of complexes between pindolol and low-molecular-weight succinoglycan monomers (SGs). Even though SGs have a linear structure, the solubility of pindolol in the presence of SGs was increased up to 7-fold compared with methyl-β-cyclodextrin reported as the best solubilizer of pindolol. Complexation of SGs with pindolol was confirmed by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Formation constants of complexes were determined from phase solubility diagrams. Conformation of complex was suggested based on a molecular docking study. The present study indicated that formation of pindolol/SGs complexes not only resulted in increased pindolol solubility but also could be useful for improving its clinical application as it did not affect cell viability.


Scientific Reports | 2016

β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons.

Eunil Hahm; Daham Jeong; Myeong Geun Cha; Jae Min Choi; Xuan-Hung Pham; Hyung-Mo Kim; Hwanhee Kim; Yoon-Sik Lee; Dae Hong Jeong; Seunho Jung; Bong-Hyun Jun

We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs. The assembled Ag NPs on silica NPs were confirmed by TEM and the presence of β-CD dimer on Ag@SiO2 was confirmed by UV-vis and attenuated total reflection-Fourier transform infrared spectroscopy. The β-CD dimer@Ag@SiO2 NPs were used as SERS substrate for detecting perylene, a PAH, directly and in a wide linearity range of 10−7 M to 10−2 M with a low detection limit of 10−8 M. Also, the β-CD dimer@Ag@SiO2 NPs exhibited 1000-fold greater sensitivity than Ag@SiO2 NPs in terms of their perylene detection limit. Furthermore, we demonstrated the possibility of detecting various PAH compounds using the β-CD dimer@Ag@SiO2 NPs as a multiplex detection tool. Various PAH compounds with the NPs exhibited their distinct SERS bands by the ratio of each PAHs. This approach of utilizing the assembled structure and the ligands to recognize target has potential for use in sensitive analytical sensors.


Carbohydrate Polymers | 2012

Solubilization of haloperidol by acyclic succinoglycan oligosaccharides.

Jae Min Choi; Hwanhee Kim; Eunae Cho; Youngjin Choi; Im Soon Lee; Seunho Jung

The isolated succinoglycan octasaccharide dimers isolated from Sinorhizobium meliloti 1021 have unique acyclic structures, displaying amphipathic properties against water. Thus, their potential usage as solubilizers of various water-insoluble drugs through non-covalent complexation are possible. In this study, we examined the solubility of a poorly water-soluble drug, haloperidol, in the presence of the acyclic form of succinoglycan dimers, and demonstrated that its solubility was increased up to 87 fold, Interestingly, the level of its solubility was even 7-10 fold higher than that achieved with β cyclodextrin or its derivatives that are cyclic forms, which is possibly due to the molecular flexibility of the acyclic structure of the dimers as well as the hydrophobic nature. Analyses of the stoichiometry and the stability constants for each complex were performed using phase solubility method, respectively. Additional analyses were also performed to confirm the formation of succinoglycan-drug complexes. Furthermore hypothetical 3-dimesional conformation of the complex was estimated through molecular docking simulations. Upon cytotoxicity test with a human cell line, the succinoglycan dimers displayed little effect up to 1000 μM, suggesting their potential usage to improve solubility and bioavailability of poorly soluble therapeutic agents.


Carbohydrate Research | 2015

Hydroxypropyl cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimers as effective carbohydrate-solubilizers for polycyclic aromatic hydrocarbons.

Jae Min Choi; Daham Jeong; Jinglan Piao; Kyoungtea Kim; Andrew Bao Loc Nguyen; Nak-Jung Kwon; Mi-Kyung Lee; Im Soon Lee; Jae-Hyuk Yu; Seunho Jung

The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers.


Polymers | 2017

Pentynyl Ether of β-Cyclodextrin Polymer and Silica Micro-Particles: A New Hybrid Material for Adsorption of Phenanthrene from Water

Jae Min Choi; Daham Jeong; Eunae Cho; Jae-Hyuk Yu; Muhammad Nazir Tahir; Seunho Jung

A new hybrid material for the removal of polycyclic aromatic hydrocarbons (PAH) from water was prepared by the polymerization of pentynyl beta-cyclodextrin (PyβCD) and silica micro-particles (SMP). Phenanthrene, being one of the important members of the PAH family and a potential risk for environmental pollution, was selected for this study. Results show that phenanthrene removal efficiency of the SMP was improved significantly after hybridization with PyβCD-polymer. Approximately 50% of the phenanthrene was removed in the first 60 min and more than 95% was removed in less than 7 h when 25 mL of the 2 ppm aqueous phenanthrene solution was incubated with the 100 mg of SMP-PyβCD-polymer material. Infrared spectroscopy and thermal gravimetric analysis show that the enhanced efficiency of the SMP-PyβCD-polymer compared to the unmodified SMP was due to the formation of the inclusion complexation of phenanthrene with the PyβCD. These results indicate that SMP-PyβCD polymers have a potential to be applied as molecular filters in water purification systems and also for waste water treatment.


Carbohydrate Polymers | 2013

Complexation of fisetin with novel cyclosophoroase dimer to improve solubility and bioavailability

Daham Jeong; Jae Min Choi; Youngjin Choi; Karpjoo Jeong; Eunae Cho; Seunho Jung


Journal of Inclusion Phenomena and Macrocyclic Chemistry | 2012

Inclusion complexation of naproxen with cyclosophoraoses and succinylated cyclosophoraoses in different pH environments

Chanho Kwon; Youngjin Choi; Daham Jeong; Jun Gull Kim; Jae Min Choi; Sohyun Chun; Seyeon Park; Seunho Jung

Collaboration


Dive into the Jae Min Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae-Hyuk Yu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Seyeon Park

Dongduk Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge